
 

 
NAVAL 

POSTGRADUATE 
SCHOOL 

 
MONTEREY, CALIFORNIA 

 

 
 

THESIS 
 

Approved for public release; distribution is unlimited 

A STUDY OF THE SEASTAR UNDERWATER ACOUSTIC 
LOCAL AREA NETWORK CONCEPT 

 
by 
 

Bjørn E. A. Kerstens 
 

December 2007 
 

 Thesis Advisor:   Joseph A. Rice 
 Co-Advisor: Lawrence J. Ziomek 



THIS PAGE INTENTIONALLY LEFT BLANK 



 i 

REPORT DOCUMENTATION PAGE  Form Approved OMB No. 0704-0188 
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction, 
searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send 
comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to 
Washington headquarters Services, Directorate for Information Operations and Reports, 2315 Jefferson Davis Highway, Suite 2304, Arlington, VA 
22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188) Washington DC 20503. 

1. AGENCY USE ONLY (Leave blank) 
 

2. REPORT DATE   
December 2007 

3. REPORT TYPE AND DATES COVERED 
Master’s Thesis 

4. TITLE AND SUBTITLE   
A Study of the Seastar Underwater Acoustic Local Area Network Concept 

6. AUTHOR(S)  Bjørn E. A. kerstens 

5. FUNDING NUMBERS 
 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 
Naval Postgraduate School 
Monterey, CA  93943-5000 

8. PERFORMING ORGANIZATION 
REPORT NUMBER     

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRES S(ES) 
N/A 

10. SPONSORING/MONITORING 
    AGENCY REPORT NUMBER 

11. SUPPLEMENTARY NOTES  The views expressed in this thesis are those of the author and do not reflect the official policy 
or position of the Department of Defense or the U.S. Government. 

23a. DISTRIBUTION / AVAILABILITY STATEMENT    
Approved for public release; distribution is unlimited 

23b. DISTRIBUTION CODE  
A 

13. ABSTRACT (maximum 200 words)  
 

This research considers the “Seastar” concept of an underwater local-area network (LAN) having a central 
node and multiple peripheral nodes. The concept of operation for the Seastar LAN involves the delivery of large 
volumes of digital information from the peripheral nodes through direct acoustic communication links to a 
sophisticated central node for assimilation (e.g., beamforming, fusion). For a design range of 500 meters, link budget 
analysis in combination with parametric analysis evaluates physical-layer parameters including optimum carrier 
frequency, spectral bandwidth, modulation techniques, achievable bit rate, and energy budget. Performance data 
obtained from a prototype Seastar LAN constructed from existing acoustic modems guided the creation of a Seastar 
numerical simulation. Monte Carlo simulation studies examine the relative merits of networking strategies such as 
TDMA polling and token-based TDMA. Seastar is shown to meet the anticipated requirements for undersea LAN 
applications such as sensor networks, undersea vehicle swarms, and dive teams. 

 
 

 
15. NUMBER OF 
PAGES  

177 

14. SUBJECT TERMS Acoustics, sound, ocean, acoustic communications, underwater networks, 
LAN, network simulation, Seaweb, Seastar 

16. PRICE CODE 

17. SECURITY 
CLASSIFICATION OF 
REPORT 

Unclassified 

18. SECURITY 
CLASSIFICATION OF THIS 
PAGE 

Unclassified 

19. SECURITY 
CLASSIFICATION OF 
ABSTRACT 

Unclassified 

20. LIMITATION OF 
ABSTRACT 
 

UU 
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)  
 Prescribed by ANSI Std. 239-18 



 ii  

THIS PAGE INTENTIONALLY LEFT BLANK 



 iii  

Approved for public release; distribution is unlimited 
 
 

A STUDY OF THE SEASTAR UNDERWATER ACOUSTIC LOCAL AR EA 
NETWORK CONCEPT 

 
 

Bjørn E. A. Kerstens 
Lieutenant, Royal Netherlands Navy 

 
 
 

Submitted in partial fulfillment of the 
requirements for the degree of 

 
 

MASTER OF SCIENCE IN ENGINEERING ACOUSTICS 
 
 

from the 
 
 

NAVAL POSTGRADUATE SCHOOL 
December 2007 

 
 
 

Author:  Bjørn E. A. Kerstens 
 
 
 

Approved by:  Joseph A. Rice 
Thesis Advisor 

 
 
 

Dr. Lawrence J. Ziomek 
Co-Advisor 

 
 
 

Dr. Kevin Smith 
Chairman, Engineering Acoustics Academic Committee 



 iv 

THIS PAGE INTENTIONALLY LEFT BLANK 



 v 

ABSTRACT 

This research considers the “Seastar” concept of an underwater local-area network 

(LAN) having a central node and multiple peripheral nodes. The concept of operation for 

the Seastar LAN involves the delivery of large volumes of digital information from the 

peripheral nodes through direct acoustic communication links to a sophisticated central 

node for assimilation (e.g., beamforming, fusion). For a design range of 500 meters, link 

budget analysis in combination with parametric analysis evaluates physical-layer 

parameters including optimum carrier frequency, spectral bandwidth, modulation 

techniques, achievable bit rate, and energy budget. Performance data obtained from a 

prototype Seastar LAN constructed from existing acoustic modems guided the creation of 

a Seastar numerical simulation. Monte Carlo simulation studies examine the relative 

merits of networking strategies such as TDMA polling and token-based TDMA. Seastar 

is shown to meet the anticipated requirements for undersea LAN applications such as 

sensor networks, undersea vehicle swarms, and dive teams. 
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I. INTRODUCTION  

The Seaweb wide-area network (WAN) concept [1] provides for local-area 

networks (LANs) having a sophisticated central node that collects and fuses undersea 

data from a set of relatively simple peripheral nodes, as illustrated in Figure 1.  
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(50-500m links)

Peripheral 
nodes

Central 
node

Seastar LAN
(50-500m links)

Peripheral 
nodes

Central 
node

                       

Seaweb 
WAN

Seastar 
LAN

Seaweb 
WAN

Seastar 
LAN

               
 

Figure 1 Left: The Seastar concept involves asymmetric, centralized topologies. 
Relatively simple peripheral nodes (red) report time-series data at high-bit-rates to 
sophisticated central nodes (green), where data fusion is performed for the local 
area. Peripheral nodes may receive low-bit-rate utility packets from the central 

node and from their peers. Right: Wide-area communications (green links) 
between central nodes and theater communications through gateway nodes occur 

via Seaweb networking in a lower band of the acoustic spectrum. 

In more general terms, localized clusters of nodes (e.g., sensors, crawlers, divers) 

assimilate as subnets through the formation of LANs, each containing a central node and 

peripheral nodes distributed in an undersea region up to one square kilometer (km2). The 

Seaweb LAN with centralized, or star, topology is called “Seastar” and is motivated by 

the desire for an additional tier of local-area communications compatible with and 

complementary to Seaweb wide-area acoustic communications. The Seastar tier uses a 

higher-frequency portion of the acoustic spectrum made possible by shorter 

communication ranges and necessitated by the high throughput of the LAN. The baseline 

Seastar topology is centralized, with axial asymmetry and peer-to-peer capability. 



 2 

A. SCOPE 

This thesis explores candidate Seastar networking strategies and considers 

physical-layer and link-layer attributes. The effects of the underwater communications 

channel on carrier frequency, signal bandwidth, capacity and energy budget are studied 

and tradeoffs regarding modulation type, access method and topology are presented. In 

order to investigate the feasibility of an underwater acoustic LAN, a Seastar prototype 

was developed and tests were conducted both in air and in water. The experimental 

results provide useful information for design purposes and form the basis of a network 

simulation that was developed as part of this research. The simulation is used to study 

different network strategies under various conditions and to perform case studies that are 

included in this document. In summary, this thesis provides tradeoffs that allow both 

designers and operational users to validate the possibilities and limitations of the Seastar 

concept. 

 

Figure 2 Seastar applications include sensor arrays, sensor clusters, unmanned undersea 
vehicle formations, and dive teams.   

The broad scope of the research topic requires judicious restrictions in the 

research that was conducted. Throughout this study a fixed communication range of 500 

meters (m) is considered. Propagation is generally assumed to occur along a direct path in 
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a homogeneous (constant speed of sound) environment. The use of mobile 

communication nodes is excluded in simulations and experiments but included in 

discussions. Issues such as interference between adjacent Seastar clusters and integration 

of Seastar and Seaweb need to be studied, but are beyond the scope of this thesis.  

B. APPROACH AND STRUCTURE 

The topic of acoustic communications brings two communities together 

(communication theory and underwater acoustics), each using their own language. The 

literature on this topic is not always consistent in translating the terminology of the 

communications discipline and the acoustics discipline. 

Chapter II adopts the conventions of the underwater acoustician to discuss the 

physical properties of the underwater communications channel, and derive an expression 

for the acoustic signal-to-noise power ratio and corresponding sonar equation. A link 

budget analysis is performed for conditions under which Seastar is anticipated to operate 

with the purpose of determining an optimum carrier frequency. 

Chapter III discusses the physical layer of Seastar and contains a case study to 

provide the reader with some hardware, bandwidth, capacity and energy budget 

considerations. The central part of Chapter III contains a study on modulation techniques. 

Chapter IV brings us deeper into network theory and suggests several network 

topologies. It discusses variations in access to the medium and studies control of 

information flow. The chapter ends with an outline of experiments that resulted in the 

development of the first Seastar prototype. 

Chapter V leads the reader further into the prototype analysis by providing an 

overview of network performance results as obtained during an in-water deployment in 

St. Andrews Bay, FL. The results of these experiments were used to develop a network 

simulation tool that provides us with data regarding the performance of other network 

strategies that could not easily be implemented and tested with existing hardware.  

Chapters VI and VII show the setup of the simulation and display parametric 

results allowing a better view on Seastar possibilities and limitations. 
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Finally, since an optimal Seastar strategy depends on the networks’ purpose, three 

case studies are performed to provide operational end-users with some ideas that may 

help shape future applications for Seastar. These case studies illustrate the conclusions 

stated in Chapter VIII. 
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II. THE COMMUNICATION CHANNEL 

An important characteristic of the underwater acoustic communication channel is 

the dependence of path loss and ambient noise on communication distance and 

transmission frequency. This, therefore, affects other communication parameters like 

signal bandwidth and data rate. In this chapter we look at the influence that the 

environment has on the signal that is transmitted and from this we will determine the 

optimum carrier frequency and bandwidth to use. We will limit our analytical scope to 

path loss and ambient noise, but the effects of multi-path propagation and single-path 

fluctuations will be briefly discussed when analyzing appropriate waveforms. 

A. THE PHYSICAL CHANNEL 

The underwater communication channel can be described as a cylindrical 

waveguide that is bounded by the sea surface and the sea floor with communication 

ranges generally exceeding water depth. Variations in channel composition, depth and 

temperature cause refraction of sound, often combined with surface and bottom 

reflections and convolutions with imparted boundary conditions, resulting in a multitude 

of possible propagation paths for communication signals. Each single path imposes 

temporal, spatial and frequency-dependent amplitude and phase fluctuations on a 

waveform. The accumulation of these paths at the receiver produces multi-path reception 

replete with distortion, and dispersion of the waveform. These deleterious effects 

translate into fading, inter-symbol interference, and loss of coherence.  

B. ACOUSTIC SIGNAL-TO-NOISE POWER RATIO 

The sometimes inconsistent use of terminology in the interdisciplinary field of 

underwater acoustic communications by the technical communications community [2–4] 

and underwater acoustics community [5–7] creates confusion, and forms the motivation 

for deriving some important expressions in generally accepted acoustic terms. This will  

 

be done in accordance with [8–9]. To analyze the communication losses through the 
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channel we will introduce the term acoustic signal-to-noise power ratio SNRa at the 

receiver which is defined as follows [9]: 
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where ps(t,r1) and pn(t,r1) are the acoustic pressures due to signal and noise, respectively, 

incident upon a receiver located at r1=(x1,y1,z1), and E{•} is the expected value. The SNRa 

informs us on the status of the transmission at the input to the receiver before the signal is 

processed. 

1. Signal 

A communications signal in an underwater acoustic channel usually consists of a 

band of frequencies. Therefore, in order to derive an equation for SNRa that is equivalent 

to the “narrowband” signal-to-noise ratio equation in [2], the time-harmonic acoustic 

pressure at time t in seconds (s) and range r0,1 in meters (m) from the source (see Figure 

3) can be expressed as: 

 ( ) ( ) ( )( )1 , 1 , 1, cos 2s f s f sp t p ft pπ= + ∠r r r  (2.2) 

where, (e.g. see [10]) 

 ( ) ( )( ) ( )0,1 0,1

, 1 0
0,1

f r R jk r R

f s

R
p p e e

r
α− − − −=r , (2.3) 

 0
0 0

j pp p e+ ∠=  (2.4) 

is the spatial-dependent part of the time-harmonic acoustic pressure in Pascals (Pa) at one 

meter from the source and α(f) is the frequency-dependent attenuation coefficient in 

Nepers per meter (Np/m). We assume that the signal sound source is a motionless, time-

harmonic, omnidirectional point source and that the medium is unbounded and viscous 

with a constant speed of sound, and R=1 m is the reference range from the source. 
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Figure 3 Source (r0) – receiver (r1) geometry where R = 1 m is the reference range 
from the source. 

 

Substitution of P0=|p0| into (2.4) and computing the magnitude of (2.3) yields 

 ( ) ( )( )0,1

, 1 0
0,1
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R
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If we treat ps(t,r1) as being deterministic and since it is also periodic, we can replace the 

numerator of (2.1) with the time-average power 
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Substituting (2.5) into (2.6) gives the following equation: 
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where prms,s(r1) is the root-mean square value of the acoustic pressure of the signal in Pa 

at a receiver at position r1 that was transmitted omnidirectionally by a source at position 

r0.  

2. Noise 

Noise in the ocean is generated by various sources such as wind, shipping and 

flow noise. To come up with a general expression for the average power of the acoustic  

pressure that is created by the noise and received by the receiver at r1, we assume that  
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pn(t,r1) is a zero mean, wide-sense stationary (WSS), random process, representing an 

arbitrary function of time. As a result, the autocorrelation function of the noise can be 

expressed as follows: 

 { }*
1 1 1 1 1( , , ) ( , ) ( , ) ( , ) ( , )

n n np p p n nR t t R t t R t E p t p t′ ′ ′= − = ∆ =r r r r r  (2.8) 

Since 1( , )
npR t∆ r  forms a Fourier transform pair with its power spectral density function 

1( , )
npS η r in Pa2/Hz, the average power of the zero mean, WSS noise is given by the 

following relation: 

 ( ) { }22
1 1 1(0) ( , ) ( , )

n n np p n pR E p t S dσ η η
∞

−∞

= = = ∫r r r  (2.9) 

where ( )2
1npσ r  is the noise variance and η represents frequency in hertz (Hz). If we 

consider a limited noise bandwidth of ∆f centered around frequency f, and taking into 

account that the power spectrum is an even function of frequency, we obtain the 

following expression for the denominator of (2.1): 

 ( ) { } ( 2)22
1 1 1 1( 2)

( , ) 2 ( , ) 2 ( , )
n n n

f f

p n p pf f
E p t S d S f fσ η η

+ ∆

− ∆
= = = ∆∫r r r r . (2.10) 

This general expression for the average power of the noise can easily be converted to a 

noise level by letting 1 f Hz∆ = . Substituting (2.7) into the numerator of (2.1) and (2.9) 

into the denominator of (2.1) yields: 
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where Pref =1 µPa is the root-mean-square reference pressure amplitude. 

The last step is to express (2.11) in decibels (dB) and set the reference range R to 

1 m. Doing so yields an expression for SNRa (in dB) as shown in (2.12) in more familiar 

terms; namely, source level (SL), noise level (NL) and transmission loss (TL), where 

transmission loss consists of a spherical spreading term and a frequency-dependent 

attenuation term:  

 (in dB)aSNR SL NL TL= − −  (2.12) 
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where 

 ( ) 10in dB 10loga aSNR SNR=  (2.13) 
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 10 0,1 0,120log ( ) ( )( 1)     dB re refTL r f r Pα ′= + −  (2.16) 

and ( ) 8.686 ( )f fα α′ =  where ( )fα ′ is in dB/m and ( )fα is in Np/m. We will use 

analytical expressions based on empirical data for ( )fα ′  and 1( , )
npS f r , in order to allow 

us to perform the next step in analyzing underwater acoustic communications. We will do 

this by performing a link budget analysis, a method that was described by Hansen [11] 

and proved to be viable in the underwater environment. 

C. LINK BUDGET ANALYSIS 

1. Transmission Loss 

Spherical spreading and frequency-dependent attenuation are the two components 

of transmission loss (TL) in (2.16). Some of the literature (e.g., see [1]) expresses the 

spreading component 10 0,120log ( )r  in the form of 10 0,110log ( )k r , 1 2k≤ ≤ , where 1k =  is 

used for cylindrical spreading, 2k =  for spherical spreading and 1.5k =  for the so called 

practical spreading. This may result in severe under- or overestimation. Although it is 

recognized that physics-based modeling of multi-path propagation is more realistic and 

provides a more accurate representation of the losses in the channel, the choice has been 

made to use the spherical spreading direct path model. 

Various empirical formulas for the attenuation coefficient ( )fα ′ can be found in 

the open literature. The empirical formula provided by Francois and Garrison [12, 13] is 

claimed by them to apply to all oceanic conditions and frequencies from 200 Hz to 1 

megahertz (MHz) with an estimated accuracy of 5% and appears to embrace and improve 
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upon the studies conducted by Thorp [14], Fisher and Simmons [15], and Marsh and 

Schulkin [16]. Since we anticipate using carrier frequencies between 20 and 100 kilohertz 

(kHz), we will use the formula in Francois and Garrison [12, 13] for the attenuation 

coefficient. Figure 4 shows two examples of frequency dependency of the attenuation 

coefficient expressed in dB/km for two different temperatures, 14 T C= �  and 20 T C= � , 

salinity 35S =  parts per thousand (ppt), acidity 8.0pH = and depth 50 mD = . 

 

 

Figure 4 Attenuation coefficient ( )fα ′ in dB/km versus frequency in kHz based on 
Francois and Garrison [12, 13] for the above described conditions.  

 

It is clear that the attenuation coefficient increases with frequency, but since we 

consider a maximum transmission range of 500 m for Seastar, the question arises at what 

frequency will the attenuation coefficient start to gain influence compared to spherical 

spreading. 
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Figure 5 indicates that the impact of frequency-dependent attenuation at 500 m is 

insignificant up to approximately 25 kHz, but adds 7 dB to the TL at 50 kHz. Beyond 50 

kHz the influence of attenuation increases quickly. Increasing the carrier frequency and 

signal bandwidth therefore comes at the cost of range reduction. 

 

 

Figure 5 Relative influence of losses caused by frequency-dependent attenuation on 
total transmission loss in dB (vertical axis) for different ranges in m (horizontal 

axis). For a range of 500 m, losses due to attenuation are of minor importance for 
frequencies below 25 kHz compared to losses due to spherical spreading. 

 

2. Noise Level 

The next factor in (2.12) that needs to be addressed is the noise level given by 

(2.15). If we consider future Seastar deployment without defining geographic restrictions 

we learn [5, 6, 17] that underwater noise in general contains several contributors that each 

affect different frequency bands and that can be described empirically. Comparisons for 

different situations [6] show that different oceanographic conditions, such as water depth 
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and temperature, do influence the appearance of noise but that the empirical formulas [5] 

satisfy a description for noise in the most general case. Noise measurements are also 

reported as noise spectrum levels (NSL) in dB with reference to 1 µPa2/Hz (e.g., see [10]) 

 1
10 2

2 ( , )
10 log

µPa / Hz
npS f

NSL
 

=  
 

r
.  (2.17) 

The NSL in dB based on empirical formulas by Coates [5] is generally dependent on four 

sources dominating certain frequency bands, namely turbulence (<10 Hz), shipping (10-

200 Hz), wind (0.2-100 kHz) and thermal activity (>100 kHz). Figure 6 indicates that the 

NSL for the frequency band between 1-100 kHz that is typically used for underwater 

communications is mainly due to wind.  

 

 

Figure 6 The noise spectrum level (NSL) in dB based on empirical formulas by Coates 
[5]. 

 

Figure 7 demonstrates that the wind speed has a profound effect on the value of 

the NSL. 
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Figure 7 Increase of wind speed has a profound effect on the noise spectrum level. 
Based on empirical formulas by Coates [5].  

 

3. Optimum Carrier Frequency as a Function of Range 

Combining TL and NL for a wind speed of 5 meters per second (m/s) results in 

Figure 8, where ( )TL NL− +  is plotted so that the red-yellow region indicates favorable 

transmission conditions. For the maximum anticipated range of 500 m, small negative 

values for ( )TL NL− +  can be observed somewhere between 30–50 kHz. In order to 

determine an exact minimum, a slice at 500 m is taken from Figure 8 and plotted for 

various wind speeds and medium shipping density, resulting in Figure 9.  
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Figure 8 Effect of frequency and range on transmission loss and noise level (dB re 1 
µPa). 

 

Table 1 shows the frequencies at which the minimum TL+NL are found for 

various wind speeds and seawater temperatures with medium shipping density, a salinity 

of 35 ppt and a water depth of 50 m. The last column shows the frequencies for various 

wind speeds when averaged over sea water temperature. These averages are taken to be 

representative of “typical” values. It is obvious from Table 1 that the minimum value for 

TL NL+  depends for a large amount on wind speed and to a lesser extent on sea water 

temperature. Other factors, like shipping density or water depth, have no significant 

influence. 

 8˚C 14 C̊ 20 C̊ 26 C̊ Average 
0 m/s 28.3 29.0 30.1 31.4 29.7 
5 m/s 39.3 38.9 41.1 44.3 40.9 
10 m/s 40.3 39.6 41.8 45.3 41.8 
15 m/s 40.5 39.7 42.0 45.6 42.0 

Table 1 Frequency (kHz) at which TL NL+ minima occur for various wind speeds in m/s 
(rows) and sea water temperatures in degrees Celsius (columns).  

- (T
L+

N
L) (dB

 re 1 μ
P

a) 
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In the case of no wind, the frequency at which TL NL+ has a minimum value is 

approximately 30 kHz. In the presence of wind speeds of 5–15 m/s, this frequency can be 

found just above 40 kHz. We will define the frequency at which the least losses occur for 

a given range, the optimum carrier frequency. In order to ensure reliable 

communications, it is desirable to choose this frequency as the carrier frequency or center 

frequency when considering bandwidth.   

 

Figure 9 TL NL+ in dB versus frequency in kHz for various wind speeds at a range 
between source and receiver of 500 m and sea water temperature of 20˚C, 35S =  
ppt, 8.0pH =  and 50D =  m. The optimum carrier frequency (kHz) is found at 

the minimum value of TL NL+ .  

 

4. Source Level 

Now that TL, NL and optimum carrier frequency are known, the SL required to 

produce a desired SNRa in dB can be determined. Although high source levels (>180 dB) 

are possible and common in underwater acoustic communications, they introduce 

reverberation which prolongs the impulse response. Reverberation cause symbols to 
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overlap at the receiver, which is called intersymbol interference. Avoiding intersymbol 

interference by reducing reverberation can be achieved by decreasing the SL. Other 

motivations for minimizing SL are transmission security and energy budget. It is 

therefore relevant to balance the choice of transmit power with the expected TL and NL 

and desired SNRa. 

  

Figure 10 Time-average acoustic power Pavg in W versus SL in dB for Pref = 1µPa, Rref = 
1 m for ρ = 1026kg/m3 and c = 1499m/s.  

 

The time-averaged radiated acoustic power in watts for a time-harmonic, 

omnidirectional, point source related to this SL is given by  

 
2 2

10
4

10
SLref ref
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R P
P

c

π
ρ

⋅
= ⋅  (2.18) 

where =1 µParefP  is the root mean square reference pressure, 1 mrefR = is the reference 

range from the source, ρ is the density of the medium in kg/m3 and c is the speed of 

sound in m/s in that medium at a given depth, salinity and temperature (see Figure 10). 
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III. PHYSICAL LAYER 

The Open Systems Interconnection (OSI) reference model, which was developed 

for terrestrial purposes by the International Organization for Standardization (ISO) 

consists of seven layers of standards that can be developed independently and 

simultaneously. Data moves down through these layers before being transmitted and 

moves up again at the receiver. Although this model is rarely achieved in practice, its 

structure has proven useful for the development of network protocols. We will use this 

model as a way to guide us through the process of studying Seastar networking aspects 

by focusing only on the lowest three layers: the physical layer, link layer and network 

layer.   

 

Figure 11 OSI model 

 

The physical layer describes the transmission of digital symbols over the physical 

medium and deals with mechanical, functional, structural and procedural characteristics 

to access the medium. The challenge within the physical layer is to use the very limited 

bandwidth that is available in the underwater channel as efficiently as possible. 

Application 
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A. MODULATION 

An issue that needs to be addressed is finding a suitable waveform modulation 

type. Stojanovic [18] and Akyildiz, et al [19] provide useful summaries of research and 

developments in the field of underwater acoustic communications. Intersymbol 

interference due to multi-path arrivals and a time-varying channel seriously degrade 

communication performance. Since mobile nodes are not excluded from being part of a 

Seastar network, the Doppler effect due to motion of transmitter and/or receiver is 

another factor that contributes significantly to performance degradation. Frequency shift 

keying (FSK) modulation techniques using phase-incoherent demodulation techniques 

are least sensitive to these channel fluctuations and are traditionally used for underwater 

communications. Recently, coherent demodulation techniques to detect phase shift 

keying (PSK) modulation and quadrature amplitude modulation (QAM) have 

demonstrated feasibility for use under water [18, 19]. Various forms of PSK and QAM 

using coherent demodulation have shown a bit rate increase of an order of magnitude 

compared to modulation types that depend on incoherent detection techniques [18, 19]. 

The experimental conditions, however, were mostly either very short range (<100m) in 

the vertical direction or very deep water with rather complex, often non-real-time 

detection, equalization and signal processing techniques at the receiver [18, 19]. Tests 

using existing commercial modems with PSK modulation conducted in the anechoic 

chamber and anechoic water tanks at NPS demonstrated a very poor performance, as will 

be discussed in Chapter IV, whereas MFSK modulation was generally reliable. Although 

the developments in the field of coherent demodulation look promising, it is so far 

considered not yet feasible for Seastar purposes. We will therefore focus on modulation 

techniques that do not depend on coherent detection and accept the bit-rate limitations. 

1. M-ary Frequency Shift Keying (MFSK) 

MFSK has proven to be a robust modulation scheme for underwater 

communications under various conditions [18, 19]. MFSK [20–23] uses multiple (M) 

frequencies, offset from the carrier frequency, to represent M different symbols, each 
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containing nb bits so that 2 bnM = . An MFSK signal is a pulse train as shown in Figure 

12 (e.g., see [20]) and is represented in the time-domain by 

 ( )
1

( ) ,      0
N

n n d
n

x t x t t t T
=

= − ≤ ≤∑  (3.1) 

where the nth pulse, representing one of the M symbols, is given by 

 ( ) ( ) 0.5
cos 2 [ ] rectn c n n

t T
x t A f f t

T
π ε − = + ∆ +  

 
 (3.2) 

where 

N: total number of pulses (symbols) transmitted in time interval 0 dt T≤ ≤  

tn: time instant in seconds when the nth pulse begins  

Td: total duration in seconds of the transmitted signal (pulse train) 

fc: carrier frequency in hertz 

∆fn: frequency offset of nth pulse in hertz representing a unique symbol 

εn: unintentional additional phase shift of nth pulse in radians 

T: pulse length (symbol duration) in seconds of an individual pulse (symbol) 

in the pulse train. One symbol is equal to nb bits. 

 
 

Figure 12 An example of 4-ary frequency shift keying (MFSK) using 4M =  
frequencies to represent 4M =  different symbols. 
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In (3.2), a rectangle function is used to shape the pulse, but other windowing 

functions are not excluded. The duration of a symbol T is given by 

 b bT n T= , (3.3) 

where Tb is the bit duration in seconds. The total signal duration Td is then expressed as 

NT seconds. The additional phase, εn, is included because unintentional phase shifts at the 

transmitter are hard to avoid. If the frequency offset is 

 n
n

k
f

T
∆ = , (3.4) 

where kn is a positive or negative integer, then the individual pulses are orthogonal even 

with phase shift εn, that is (e.g. see [21]),   

 ( ) ( ) ( ) ( )*
,, ,       , 1,2,...,

mm n m n x m nx t x t x t x t dt E m n Mδ
∞

−∞

= = =∫ ,  (3.5) 

where δm,n is the Kronecker delta and 
mxE  is the energy contained in symbol m given by  

 ( ) ( ) ( ) 2 21
, ,       1,2,...,

2mx m m mE x t x t x t dt A T m M
∞

−∞

= = = =∫ . (3.6) 

The factor kn is an integer that determines the spreading of the frequencies. One possible 

set, the one that minimizes bandwidth and allows the bandwidth to be centered around an 

optimum carrier frequency, is kn∈{±1,±2,…,±M/2} and is used for this analysis. Other 

sets such as kn∈{±1,±3,…,±(M-1)}, which spread the frequencies more sparsely, are also 

allowed. 

Now that we know the representation of the signal in the time domain and the 

conditions for orthogonality, we will proceed by finding an analytical expression for an 

MFSK signal that relates its bandwidth to bit rate and the number of bits per symbol bn . 

The first step is to take the Fourier transform of (3.1).This gives 
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The frequency spectrum is therefore a series of sinc-functions with maxima at 

c nf f f= + ∆  and zero crossings that overlap each other exactly. In general, sinc( )f T  
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equals zero at f i T=  where 1, 2,...i = ± ± , and exists for all frequencies. An infinite 

bandwidth is not realistic and therefore a judgment call is required for defining 

bandwidth. Note that bandwidth is always measured along the positive frequency axis. A 

rule of thumb for unit-amplitude sinc-functions is that the bandwidth is equal to a 

frequency interval where sinc( ) 0.1f T ≥ . As Figure 13 shows, sinc( ) 0.1f T <  for 

3f T> , which refers to the location of the third zero crossing of the baseband sinc-

function. Choosing the location of the next zero crossing, such as 4f T= , or even 

5f T= , results in a more conservative estimate of signal bandwidth. 

 

Figure 13 Magnitude spectrum of sinc( )f T . 

 

Although it is often common to determine the bandwidth for a baseband sinc-function 

using 1f T= , it is really an underestimation. In this thesis, we will choose a 

conservative estimate of bandwidth set at 5f T=  for baseband, unit-amplitude, sinc-

functions, although we do study the impact of other values later in this section. 
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The bandwidth of the MFSK frequency spectrum given by (3.7) is determined 

next. An estimate of the maximum positive frequency component fmax of (3.7) is 

 max

5
maxc nf f f

T
= + ∆ + , (3.8) 

which, upon substitution of (3.4) and 2nk M=  into (3.8), gives 

 max

1 5

2c

M
f f

T T
= + +  (3.9) 

An estimate of the minimum positive frequency component fmin of (3.7) is 

 min

5 1 5
min

2c n c

M
f f f f

T T T
= + ∆ − = − −  (3.10) 

Therefore, an estimate of the required bandwidth for transmitting an MFSK signal is 

 ( )max min

10 1
10x

M
BW f f M

T T T
= − = + = +  (3.11) 

Finally, upon introducing 

 
1

D
T

= , (3.12) 

where D is defined as the symbol rate or baud in symbols per second, the bandwidth 

formula given by (3.11) can be rewritten as 

 ( )10xBW M D= + . (3.13) 

Substitution of (3.3) into (3.12) gives 

 b

b

R
D

n
=  (3.14) 

where 

 
1

b
b

R
T

= , (3.15) 

is the bit rate in bits per second (bits/s).  

Equation (3.13) is an estimate of the bandwidth of an MFSK signal in terms of the 

symbol rate D and the number of unique symbols M. The definitions for bit rate and 

symbol rate or baud in the literature are sometimes confusing since it may be unclear 

whether these rates refer purely to information bits or to raw bits including headers and 

bits for coding and error detection/correction, generally summarized as overhead. The 
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definitions for D and Rb as stated in this thesis refer to symbols and raw bits including 

overhead, meaning that the actual information rate may very well be lower.  

Before any conclusions are made on a suitable bandwidth for a Seastar network, 

(3.13) will be analyzed in more detail. For this analysis, 2 bnM =  represents the number 

of different symbols that can be created based on the number of bits nb. For example, if 

2bn = , then there are 4M =  possible symbols consisting of two bits: 00, 01, 10 and 11. 

This requires four offset frequencies. Note that both M and D depend on nb, the number 

of bits per symbol. Therefore, the relation between bandwidth BWx, symbol rate D, and M 

can also be expressed in terms of nb and the bit rate Rb, and is shown in Figure 14. 

Rewriting (3.13) in terms of nb gives 

 ( )2 10bn b
x

b

R
BW

n
= + . (3.16) 

 

Figure 14 Bandwidth BWx in kHz of a MFSK signal versus bit rate Rb in bits/s for 
different number of bits-per-symbol (nb). A reduction of the number of 
frequencies ∆fn by reducing nb does not always result in a smaller BWx. 

At first glance, Figure 14 shows what is expected: for a given value of nb, 

increasing the bit rate comes at the cost of increasing bandwidth. Examining the figure 
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more carefully reveals an interesting phenomenon. As nb increases, the number of 

frequency offsets ∆fn increases and one would expect an increase in signal bandwidth. 

This expected trend apparently breaks down for a fixed value of bR  and for small nb and 

shows the opposite effect. The following example illustrates this numerically.  

For 1000bR =  bits/s and 3bn =  bits/symbol, the transmission bandwidth is 

6xBW =  kHz. For 5bn =  bits/symbol, 8.4xBW =  kHz shows the expected increase in 

transmission bandwidth BWx. If, on the other hand, a lower number of bits per symbol is 

chosen, for example 2bn =  bits/symbol, we find 7xBW =  kHz, which is larger than the 

bandwidth for 3bn =  bits/symbol. This implies the existence of an optimum value for bn  

for a given value of bR .  

 

Figure 15 Bandwidth xBW  in kHz of a MFSK signal versus nb, the number of bits per 

symbol for different bit rates Rb in bits/s. If a minimum transmission bandwidth is 
desirable, an optimum value for nb can be found near 3bn = . 
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The optimum value for nb becomes obvious when plotting bandwidth BWx versus 

nb for a given Rb (see Figure 15). If (3.16) is rewritten as follows 

 ( )2 2bn b
x

b

R
BW z

n
= + , (3.17) 

where z defines the number of zero crossings of the sinc-function (previously 5z = ), then 

in order to find the optimum value of nb that will minimize BWx for a given value of Rb 

and z, we need to solve the following equation: 
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b

b
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b

x n
b b b b

Rd z
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 
= − − = 
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or 

 
2

ln 2 1
2 bb n

z
n = + . (3.19) 

 

Figure 16 Graphical solution of the transcendental equation given by (3.19). A more 
conservative definition of bandwidth shifts the optimum value for nb from 2 

( 1z = ) to 3 ( 3z =  and 5z = ). 

 
 

Equation (3.19) is a transcendental equation which is independent of Rb. Figure 16 

is a graphical solution of (3.19) and shows that the optimum value of bn  depends on the 

2
1

2 bn

z+ ln 2bn
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choice for z and, therefore, on the definition of bandwidth. Rounding the values to the 

nearest integer shows that the optimum values for bn  are: 2bn =  for 1z = , and 3bn =  for 

3z =  and 5z = . The existence of an optimum number of bits per symbol can be 

explained by the relatively small impact that the term 2 bn  in (3.16) has at low values of 

bn  compared to the 1 bn  factor. The term 2 bn  quickly starts to dominate at values of bn  

greater than three.  

The general impact of z on BWx is shown in Figure 17. The definition of 

bandwidth, again, is subjective and allows for both over- and underestimation of 

achievable bit rates. The conservative choice of 5z =  results in a BWx that is almost 

twice as large as a bandwidth definition based on the first zero crossing ( 1z = ). 

 

Figure 17 Influence of the choice for the number of zero crossings z on bandwidth xBW  

for 3bn = . The relation between BWx in kHz, Rb in bits/s and z is given by (3.17). 

 

We summarize this section by stating that a parametric analysis can be performed 

on MFSK signals. The analysis of (3.16) has revealed some interesting and useful 

relations between bandwidth BWx, bit rate Rb, the number of symbols M, the number of 
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bits-per-symbol bn  and the definition of bandwidth based on (3.7). One should be careful 

and precise in defining the bandwidth for a sinc-function. This choice has a profound 

effect on the maximum transmission bandwidth and may even result in adjusting bn  

when minimizing bandwidth. Equation (3.19) and Figure 16 show that for a bandwidth 

defined below the third zero crossing (1 or 2z = ), the optimum value for bn  is 2bn = . 

For a bandwidth defined by 3,4 or 5z = , the optimum value for bn  is 3bn = . Although 

this optimization for bn  is useful for minimizing transmission bandwidth, Figure 14 

shows that higher bit rates require larger bandwidths for given a value for bn . 

2. Orthogonal Frequency Division Multiplexing (OFDM) 

The OFDM technique has been claimed to be one of the most promising future 

communications technologies for achieving high data rate and large system capacity [24] 

and is expected to be a valid and robust communications technique for underwater use 

[19]. Although the performance has only been tested marginally in an experimental setup 

[25], simulations [25, 26] indicate that the technique allows avoidance of intersymbol 

interference. 

OFDM uses a multi-carrier modulation scheme to transmit broadband data in 

parallel over N orthogonal carriers which allows spectral efficiency and eliminates the 

use of guard bands between the carriers [24]. In this section, we will derive a formula for 

OFDM that allows us to analyze the relation between bandwidth versus bit rate and other 

characteristics. This will then be compared to the MFSK analysis that was done in the 

previous section. 

The time domain equation for OFDM is given by Couch [27] as (see Figure 18) 
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and where 

N: total number of pulses (symbols) transmitted in time interval 0 dt T≤ ≤  

wn: complex-valued input symbol  

Td: total duration in seconds of the transmitted OFDM signal 

fc: carrier frequency in hertz 

∆fn: frequency offset in hertz 

εn: possible, unwanted phase shift in radians. 

 

 

Figure 18 An example of OFDM with 3N =  sub-carriers transmitting for dT  seconds.  
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The relation between the total duration dT  of N simultaneous transmitted pulses, the 

duration of an input symbol T in seconds and the bit duration bT  in seconds is  

 dT NT=  (3.25) 

where 

 b bT n T=  (3.26) 

and where bn  is the number of bits per symbol. The offset frequencies do not refer to 

unique symbols as with MFSK. Instead, symbol modulation is achieved by varying the 

amplitude ( nw ) and/or the phase ( nw∠ ) of a sub-carrier. 

Taking the Fourier transform of (3.20) results in the following expression for the 

complex frequency spectrum of an OFDM transmitted signal: 
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where  

 n n nc w ε∠ = ∠ + . (3.28) 

As with MFSK, this frequency spectrum is a series of sinc-functions with maxima at 

c nf f f= + ∆  and zero crossings that overlap each other exactly. Recall that 

sinc( ) 0df T =  at df i T=  where 1, 2,...i = ± ± , and that sinc( ) 0.1df T <  for 3 df T>  

(see Figure 13) which refers to the location of the third zero crossing of the baseband 

sinc-function. In contrast to MFSK, cf  is not the center frequency – it is the lowest 

frequency ( )0n = , thus making the maximum frequency offset 

 
1

max n
d

N
f

T

−∆ =  (3.29) 

and the minimum frequency offset 

 min 0nf∆ = . (3.30) 
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The bandwidth is defined as 

 max min max minx c n c n
d d

z z
BW f f f f f f

T T

   
= − = + ∆ + − + ∆ −   

   
 (3.31) 

where z is the integer number of zero crossings of the sinc-function that are used to 

estimate both the maximum and minimum frequency components. Substitution of (3.29) 

and  (3.30) into (3.31) gives 
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N z
BW
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+ −= , (3.32) 

which, upon substituting (3.25), can be rewritten as 
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The input symbol rate, or baud, is (see [27]) 

 
1 1 b

in
b b b

R
D

T n T n
= = = , (3.34) 

where bR  is the bit rate in bits/s. Finally, when (3.34) is substituted into (3.33), the 

following analytical expression for an OFDM transmitted signal relating its bandwidth to 

bit rate is found: 
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1 b
x
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. (3.35) 

 The next step is to make a fair comparison with MFSK. One way to do this is to 

demand the same number of symbols N to be transmitted over a certain time period dT  

for both transmission schemes and comparexBW . It can be seen from (3.1) and (3.20) 

that MFSK transmits N symbols in series in the time interval dT  as short pulses, each 

with duration T, whereas OFDM transmits the same number of symbols in parallel with 

duration dT . Having thus ensured that a fair comparison is possible, we start the OFDM 

parametric analysis by setting N as the variable and observing the relation with xBW . 

This is done simultaneously for 1, 3 and 5z = , 3bn = , and 2000bR =  bits/s as shown in 

Figure 19. Two important trends can be observed from Figure 19.  
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First, it shows that increasing the number of sub-carriers reduces the bandwidth. 

In other words, transmitting long symbol sequences (large N) in parallel is favorable in 

terms of bandwidth reduction. Note from (3.1) and (3.25) that this increases the total 

transmission duration dT   for both modulation schemes in the same amount.  

 

Figure 19 Bandwidth xBW  in kHz versus number of OFDM sub-carriers N for 

2000bR =  bits/s, 3bn = , and 1, 3 and 5z = . 

 

The second trend that is observed from Figure 19 is that the bandwidth for any z 

reduces asymptotically to the same value, which for 2000bR =  bits/s and 3bn =  is 

667xBW ≈ Hz. Recall that 1z =  is most commonly used, 3z =  represents the case where 

sinc( ) 0.1df T < , and 5z =  is the conservative case. This asymptotic behavior is also 

described by Couch [27] and by using (3.35) and (3.34) translates in our case as follows:  

For 1:z =  
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For 3 :z =  
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 (3.37) 

For 5 :z =  

 
9

1   and if 90, then x in x inBW D N BW D
N

 = + > ≈ 
 

 (3.38) 

As a rule of thumb, it can thus be stated that if (2 1)N z−≫ , x inBW D≈ . 

 Keeping 3bn =  and letting 100N = , the relation between xBW  and bR  for 

1, 3 and 5z =  given by (3.35) is shown in Figure 20. Figure 20 shows that much higher 

bit rates can be obtained by using OFDM compared with MFSK (see Figure 17) for 

similar values of xBW . It also confirms that x inBW D≈  for large N and it shows that the 

choice for z does not have a similar impact on required xBW  as is the case with MFSK. 

 

Figure 20 Bandwidth xBW  in kHz versus bit rate bR  in bits/s for OFDM with 3bn = , 

100N = , and 1, 3 and 5z = . 
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It may already be obvious from (3.35) that a large number of bits per symbol (bn ) 

reduces the bandwidth as is illustrated by Figure 21. 

 

Figure 21 Bandwidth xBW  in kHz versus number of bits per symbol bn  for 100N = , 

5z =  and 2000bR = bits/s. 

 

Finally, Figure 22 compares OFDM to MFSK for 1,  3 and 5z = , 100N = , and 

3bn = . It can be seen that for a given bR , the required OFDM bandwidth xBW  is always 

less than the required MFSK bandwidth and that the achievable OFDM bit rate is much 

higher than the MFSK bit rate (see Figure 17) for a given xBW .  

In summary, under similar conditions, OFDM requires significantly less 

bandwidth than MFSK to achieve a certain bit rate bR . The biggest advantage of OFDM 

is that a high bR  for a given xBW , or a small xBW  for a given bR  can easily be achieved 

by increasing the number of sub-carriers N. Although OFDM may seem the best 

modulation technique to use for Seastar, it must be emphasized that, to our knowledge, 

no in-water experiments have been conducted yet that confirm this behavior and that 
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demonstrate similar robustness in the underwater channel as MFSK. The developments of 

OFDM for underwater purposes need to be followed closely since OFDM has the 

potential to be a future candidate for Seastar applications.  

 

Figure 22 Bandwidth xBW  in Hz versus bit rate bR  in bits/s with 1,  3 and 5z = , 

100N = , and 3bn =  for OFDM and MFSK. To achieve a certain bR , OFDM 

requires significantly less bandwidth than MFSK. 

 

B. PRACTICAL CONSIDERATIONS 

Seastar involves half-duplex communications, meaning that the individual nodes 

are not able to receive and transmit at the same time. Communication ranges within a 

Seastar network are confined to 500 m, by design. Mobile nodes like unmanned undersea 

vehicles (UUVs) or divers are not excluded from being part of such a network. Seastar 

anticipates an almost continuous information flow from an arbitrary number of peripheral 

nodes. A centralized configuration with a deterministic form of transmission control and 

a central, sophisticated, Seaweb access point, capable of fusing data and accepting data 

transmissions from cheap and unsophisticated nodes to reduce cost, introduces 
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asymmetry. Transmit and/or receive arrays containing multiple transducers are useful for 

steering or focusing a signal to avoid unwanted multiple arrivals and would provide array 

gain. Cost constraints, however, make the use of arrays—including the required signal 

processors at the peripheral nodes—highly unlikely. However, receive and/or transmit 

arrays at the sophisticated central node are not excluded. 

1. Peer-to-Peer Communications 

The centralized setup requires two-way communication between the central node 

and peripheral nodes. Depending on the preferred topology and potential need for node-

to-node ranging and localization, communication amongst peripheral nodes may be an 

additional requirement. This imposes a further restriction on the geometry. Consider the 

case of a uniform radial distribution of peripheral nodes, as illustrated by Figure 23, for 

the special case of five nodes, where the central-to-peripheral node range in meters is 

given by 

 2 2( / 2)R h r= + , (3.39) 

where r is the peripheral node-to-node range in meters. In this geometry, 

  cos( / 2)h R θ=  (3.40) 

where θ is the angle that symmetrically distributes peripheral nodes around the central 

node as follows 

 
2

n

πθ = , (3.41) 

with n being the number of nodes. At least six symmetrically spaced nodes are required 

to ensure communications at the maximum range between both central and peripheral as 

well as neighboring peripheral nodes. Calculating the range excess R', given by 

 100% [2 sin( / ) 1] 100%
r R

R R n
R

π−′ = × = − ×  (3.42) 

that is required in case of fewer nodes or the reduced range Rred to maintain neighboring 

node communications is trivial and results in Table 2. Using fewer nodes imposes no 

restriction when only central-peripheral communications are considered. 
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Figure 23 Network geometry with five symmetrically distributed nodes. At least six 
nodes are required to ensure r R≤ . 

  

n R′  reduced Rred (r=500m) 
2 100% 250m 
3 73% 289m 
4 41% 354m 
5 18% 425m 

Table 2 Required range excess and reduced range in case of less than 6 nodes. 

 

2. Transmit Transducer 

The next issue involves the practical realization of the transmission of a 

modulated waveform, mathematically represented by (3.1). A factor that severely limits 

the useful band is the transmitting sensitivity level or transmit voltage response (TVR) of 

a transducer. The TVR is defined as the ratio of the pressure response of a transducer to 

the applied voltage and is commonly expressed in units of dB re 1 µPa/V @ 1 m [7, 31]. 

In general the TVR of a transducer over its operating band is not constant. The usable 

bandwidth of a transducer is commonly described by the mechanical quality factor, 

which is defined as 

R R 

r/2 r/2 

h 

θ/2 

r 

R 
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f f
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 (3.43) 

where fc is the center frequency, or resonance frequency, and fu and fl are the upper and 

lower frequencies, respectively, at which the average power has dropped to one-half its 

value at the resonance frequency [7, 28]. A high Qm represents a frequency response 

spectrum with a sharp peak, whereas a low Qm represents a broader frequency response. 

The TVR will act as an additional filter on the transmitted waveform. As an example, a 

quick survey of commercially available transducers [29, 30] shows that a low Qm of 2 to 

3 is not unreasonable near the frequency band of interest. 

Another limiting factor imposed by the transducer is the rise time for a pulse to 

reach steady state. Recall that (3.2) uses a rectangle function to describe a pulse. The rise 

time will affect the frequency spectrum that is transmitted, which has an impact on 

bandwidth and achievable data rates. It may also affect the orthogonality of the individual 

pulses depending on the modulation type. The rise time in seconds to reach 96% of the 

steady-state amplitude is give by [31] 

 m
rise

c

Q
t

f
= . (3.44) 

Another way of describing this is that Qm cycles are required for the amplitude to build 

up to 96% of its final value, or reduce to 4% of its maximum value. Short pulses will be 

affected relatively more than long pulses. 

3. Multi-access Interference 

Although an individual LAN manages its own internal channel access, it needs to 

be considered that Seastar networks might operate in each other’s vicinity. Interference 

has a dramatic impact on the performance, as will be shown in Chapter V, and frequency 

separation, resulting in bandwidth reduction, may be the only physical solution to 

overcome this problem.  
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C. PHYSICAL LAYER CASE STUDY 

Let us, as an example, analyze the physical layer by performing a case study to 

identify a reasonable transmission bandwidth, capacity and energy budget. Doing so 

requires approximations and assumptions on several factors such as transducer 

performance and channel properties.  

For wind conditions of 5–15 m/s shown in Table 1, the optimum carrier frequency 

can be found to be approximately 41 kHz. For convenience, we choose fc=40 kHz. The 

practical bandwidth is governed by TL NL+  versus frequency spectrum and transducer 

properties. An additional consideration is that the frequency band should be separated 

from the Seaweb band (currently 9–14 kHz). Assuming that a Qm of 2 is achievable, the 

half-power bandwidth based on (3.43) could stretch from 30–50 kHz which makes 

20xBW =  kHz. For a transducer with a Qm of 2 and 40cf =  kHz, applying (3.44) results 

in a rise time of 50 µs. If MFSK is the preferred modulation type, (3.13) can be applied to 

determine maximum achievable bit rate. If 3nn =  bits/symbol, then 32 8M = = , and the 

modulation type becomes 8-FSK. Based on (3.13) and (3.14), the maximum achievable 

symbol rate D is then approximately 1100 symbols/s which makes 3300bR ≈  bits/s. 

Recall that overhead is included so the information rate will be lower by a factor that 

depends on the type of error detection and correction coding applied, message header 

lengths, etc. Using (3.12), the pulse length T for a symbol would have a minimum length 

of 0.9 milliseconds (ms) meaning that the ratio of trise over T would be 6%. If OFDM 

would be available, bit rates of 55000bR ≈  bits/s are theoretically possible for the same 

20xBW =  kHz. Further analysis would be required to determine to what extent the signal 

would be affected by the rise time. It must be emphasized that the frequency spectrum of 

the transmitted signal given by (3.7) has been convolved by both the channel impulse 

response and the TVR. 

The final step in our case study is to determine an energy budget for acoustic 

transmissions to a range of 500 m. To obtain a numerical value requires additional 

approximations and assumptions. Firstly, our analysis is limited to a single-frequency 
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time-harmonic signal only, and 1f∆ =  Hz in (2.15). We also assume a specific SNRa 

required at the receiver to reliably detect an incoming signal. Based on experience with 

commercially available Teledyne Benthos ATM-885 acoustic modems, a SNRa of 

approximately 7 dB at the receiver input ensures a probability of detection of more than 

95%. For a wind speed of 15 m/s and medium shipping density, a TL NL+  of 105 dB at 

40cf =  kHz can be extracted from Figure 9. However, the worst case TL NL+  for a 

single-frequency time-harmonic signal under these conditions within the 30–50 kHz band 

is 106 dB at 30 kHz. Adding the 7 dB SNRa to the maximum TL NL+  value results in a 

required SL of 113 dB re 1 µPa @ 1 m [see (2.12)]. In order to find the input electrical 

power to achieve this SL, we need transducer TVR and impedance data, since the root-

mean-square input electrical power, Prms, in watts (W) [32] is expressed as  

 
2

2
2

rms
rms rms

V
P i R R

Z
= = , (3.45) 

where irms and Vrms are the root-mean-square input current in amperes and voltage in 

volts, respectively. The variable R is the transducer resistance and |Z| is the magnitude of 

the transducer impedance in ohms. Although Z can be expressed in terms of resistance R 

and reactance X, it is more common to express the characteristics of a transducer in terms 

of admittance Y where 

 2 21

| |
Y G B

Z
= = + , (3.46) 

with G and B being the conductance and susceptance, respectively. The units for Y, G and 

B are siemens (S). Equation (3.45) can now be rewritten as 

 2
rms rmsP V G= . (3.47) 

A limited survey of available transducers [29, 30] yields a TVR and G at the resonance 

frequency of 145 dB and 6500 µS, respectively, as reasonable values. The input root-

mean-square power, required to produce a SL of 113 dB re 1µPa @ 1m can be found 

from 

 10 log( ) 20 log( ) 10 log( ) 10 log( )rms rmsP V G SL TVR G= + = − + . (3.48) 
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Inserting the values for SL, TVR and G in (3.48) results in an input electric Prms of 4.1 µW 

at 40 kHz provided that this is also the resonance frequency of the transducer to generate 

a SL of 113 dB. The energy required to transmit one symbol of duration 0.9T = ms, 

represented by a single frequency, is therefore -9(4.1 µW) (0.9 ms) 3.7×10  J ⋅ = . 

Calculating the energy to receive a message is less trivial as it depends on the 

demodulator and amplifier used to detect and decode the signal. To keep our analysis 

general, we use a method for calculating energy consumption described in [33]. Although 

the energy efficiency of signal processors has increased over the years, it is likely that 

receiving signals at higher bit rates requires more energy. We therefore do not make 

assumptions on improvements of receiving power and take a typical value of 0.5 W based 

on [33] for the power required to receive data. In summary, to ensure transmission of a 

single frequency signal at 40 kHz over a range of 500 m at wind speeds of 15 m/s and 

medium shipping density with a commercially available transducer, requires an input 

electric root-mean-square power of 4.1 µW, further referred to as Ptransmit. Reception of 

this signal under the same conditions requires 0.5 W, further referred to as Preceive. 

The energy budget now fully depends on operational settings such as the type of 

network, the expected number of transmissions, bit rates, packet size and the number of 

modems that are part of this network. Nevertheless, it is useful to continue the analysis to 

ascertain the order of magnitude of the required energy budget. To finalize this analysis 

we consider a network consisting of one central modem receiving data packets from, and 

transmitting control packets to, six peripheral modems over fixed ranges of 500 m. The 

preferred modulation type is 8-FSK, each symbol consisting of 3 bits, and the available 

bandwidth is 20 kHz. Each peripheral modem is assumed to transmit one data packet of a 

fixed length of 2000 bytes with 8 bits per byte at 3300 bits/s once every cycle and the 

central modems transmit one 10-byte control packet at 500 bits/s to each peripheral 

modem each cycle. For each byte transmitted, an additional redundant byte is added and 

additional overhead created by headers, etc., is ignored. Each transmission is successful 

and no dead times between transmissions are considered. One transmission from a central 

modem to a peripheral modem therefore requires a period of 
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The difference between required energy at the central modem and the energy 

required at any of the peripheral nodes is approximately two orders of magnitude. 

Although these values originate from many assumptions, the difference is significant 

enough to be taken into account. This difference, which is mainly due to the fact that 

receiving and processing a signal requires more power than transmitting, will further 

increase with a larger number of peripheral modems in the network. Added to this comes 

the fact that the central modem is also responsible for data fusion and transmission 

through a Seaweb network which makes the energy budget between central and 

peripheral modems even more asymmetric. From a peripheral modem’s perspective, we 

have ignored the energy required by other components of the peripheral nodes, such as 

the sensor that provides data for transmission. Data transfer from sensor to modem and 

modulating this data requires additional energy that needs to be included in the peripheral 

modem’s final energy budget. 

An assumed battery capacity at the central modem of 300 watt-hours or 1.08 

megajoules (MJ) that is fully available for the Seastar network would allow Seastar 

network operations for almost 26 days. This period would require a peripheral node 

battery capacity of 6000 joules (J) or 1.7 watt-hours permitting a smaller size and cost of 

these nodes. 
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The discussion regarding the physical layer of a Seastar network is summarized as 

follows. Seastar is able to operate at 500 m using a higher frequency spectrum than 

Seaweb for a period of about one month. The optimum carrier frequency is 40 kHz and, 

depending on the modulation type and signal processing techniques, bit rates of 3000 bits 

per second should be achievable using MFSK modulation and a spectral bandwidth of 20 

kHz. The availability of OFDM could improve the performance by an order of 

magnitude. The energy budget for central and peripheral modems is asymmetric and 

consistent with the envisioned topologies. More accurate performance data requires a 

further study of the effects of the transducer and the communication channel on the 

waveform, and an update of energy consumption considering modems optimized for 

operation at the frequency band of interest.   
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IV. DATA LINK AND NETWORK LAYER 

This chapter provides a framework for the organization of the dataflow within a 

Seastar network. The set of rules for data exchange is called a protocol and consists in 

our case of a layered structure as described in Figure 11. Extensive research in the field 

of access control during the last decade [19, 22, 23, 35–37] provides useful advice for 

designing Seastar. Network issues regarding error detection and correction that originate 

from terrestrial networks are considered for their applicability to Seastar. Finally, 

tradeoffs regarding topology, the physical arrangement of stations, are presented. 

Combining this information yields the design of a prototype Seastar network that is 

discussed in the last section. 

A. DATA LINK LAYER 

The link layer is responsible for ensuring transmission across the physical layer 

between two neighboring nodes and deals with synchronization, error control and flow 

control.  

1. Access Control  

Seastar is designed for multiple users to transmit information to a central node.   

In this multiple-access environment, it is necessary to share the transmission medium in a 

manner ensuring that packets are transmitted without interference from other network 

users. Research for applicability of terrestrial multiple access control techniques for 

underwater communication purposes [19, 22, 23, 35–37] provides useful tradeoffs. A 

distinction can be made in deterministic and random access methods.  

Available deterministic access methods are frequency-division multiple access 

(FDMA), time-division multiple access (TDMA) and code-division multiple access 

(CDMA).  FDMA [23] simply divides the available bandwidth into N sub-channels, 

where N depends on the number of nodes in the network. Since we anticipate a large 

number of nodes and a relatively small bandwidth, this access method is dismissed as 
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unsuitable. A theoretical variation of FDMA is spatial frequency reuse based on a cellular 

architecture [36]. This technique limits the user density and is therefore deemed 

impractical, but it could provide answers on questions regarding interference between 

clusters.  

TDMA [23] provides the user with the full available bandwidth by allowing only 

one transmission at a time. The downside is that it creates an inefficiency because of the 

long time delays required in the underwater channel. Time dispersion of the signal further 

requires additional guard bands. Fixed time slots may decrease the efficiency even further 

when transmissions are shorter than the allocated time. Polling, or interrogating nodes by 

a master node, is a way to overcome this and avoid synchronization issues which keeps 

the complexity of nodes low. However, it introduces additional overhead which also 

decreases the efficiency. 

CDMA [23] actually provides random access for users since it allows signal 

transmissions that overlap both in frequency as in time. It assigns a unique pseudo-

random code sequence to each user by spreading the information signal across the entire 

frequency band. The receiver is able to demodulate the simultaneous transmitted signals 

because of the small cross correlation that the code sequences have with each other. 

Spreading can be achieved either by direct-sequence spread spectrum (DSSS) or 

frequency-hop spread spectrum (FHSS). FHSS requires less complex receivers and is 

more robust to multiple access interference than DSSS but is also more sensitive to 

Doppler shift effects. CDMA performance is sensitive to the relative receive power of 

simultaneous signals, and power control is required to mitigate this sensitivity. A recent 

CDMA experiment [37] has demonstrated that low complexity receiver algorithms are 

realizable and effective. Although CDMA appears to be a promising technique for 

underwater communications, especially in the case of a network with multiple users and 

moving nodes at short ranges such as Seastar, more research needs to be done in this field 

before it can be applied.  

Random access methods like ALOHA, carrier sense multiple access (CSMA) and 

multiple access with collision avoidance (MACA) are reviewed in [19, 22, 23, 34]. 

Peripheral nodes using ALOHA and slotted ALOHA [22] generally do not “listen” to the 
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communications channel and transmit whenever data needs to be transmitted. 

Acknowledgement messages (ACK) report the reception of the message. CSMA [22] 

aims to prevent collisions by sensing communications activity and delaying new 

transmissions until the channel is clear. However, the long propagation time limits the 

effectiveness of CSMA for acoustic communications. MACA [22] uses request-to-send 

(RTS) and clear-to-send (CTS) messages to establish communications before transmitting 

the data packets. In a positive acknowledgement MACA protocol, if no ACK message is 

received after the transmission is completed, the full packet will be retransmitted until 

reception is acknowledged. In a negative acknowledgement MACA protocol, the 

transmitter assumes success unless it receives a repeat request. Seaweb is an example of 

successful implementation of MACA under water. The RTS-CTS messages could further 

be used as probe signals for adaptive modulation or power control. Although MACA 

reduces the amount of retransmissions significantly, it introduces additional overhead 

prior to every data transmission. 

Although random access methods are flexible, they are not very suitable under 

water when an almost continuous flow of information between nodes at short range is 

expected. The large amounts of collision avoidance overhead or retransmissions will 

cause large delays and make the network inefficient. 

Based on the previous outline, we shall pursue the use of TDMA as the favorable 

access method for Seastar. In order to overcome difficulties regarding synchronization 

and predefined time slots, and to avoid the need for synchronized clocks, it is necessary 

to introduce some form of central control. This might be provided by a polling 

mechanism or a token to be passed from node to node. This issue will be addressed in the 

section that discusses the network layer. In the meantime, developments in the field of 

CDMA in the underwater environment need to be followed closely for application to 

Seastar. 

2. CRC, FEQ and SRQ  

Error control refers to mechanisms to detect and correct errors that occur in 

transmissions. One of the most common error detection mechanisms is the cyclic 
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redundancy check (CRC). CRC is described in detail by Stallings [22] and is based on the 

calculation of a code that is a function of the bits being transmitted. This code is 

appended to the information packet and introduces a small amount of overhead.  

Two error correction mechanisms, forward error correction (FEC) and selective-

reject automatic repeat request (SRQ), will be briefly discussed from a Seastar 

perspective. 

One approach is to prevent retransmission by introducing redundant bits so that 

the receiver is capable of correcting any detected errors. This is the principle of FEC. 

While we do not want to divert towards a discussion regarding available coding 

techniques for FEC, it may be obvious that more redundancy comes at a cost. The term 

code rate which is related to FEC refers to a metric that expresses the overhead required 

to carry data at the same data rate as without the code. Code rates of 1/2, meaning that 

twice the bits are required, are no exception. FEC may take many forms and tradeoffs 

regarding overhead versus probability of error should be considered. 

 

Figure 24 An example of selective automatic repeat request (SRQ) (After [38]). 
Retransmission of corrupted sub-packets continues until the full packet has been 

received successfully. 
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SRQ is a form of error control that is already successfully incorporated in Seaweb 

and is well documented by Kalscheuer [38]. SRQ relies on the detection of bit-errors by 

the receiver using CRC and results in retransmission of the corrupted data. The principle 

of selectivity refers to the possibility of retransmitting only a portion of the message 

instead of the full message. This requires that the data packet be divided into smaller sub-

packets each padded with its own CRC bytes. The disadvantage of SRQ is that it incurs 

latency and overhead. 

Both FEC and SRQ can be applied simultaneously as has been done for Seaweb. 

Harris et al. [3] studied the combined effects of applying FEC and dividing the packet 

into smaller sub-packets. Both FEC and SRQ have proven effective and are 

simultaneously suitable for Seastar applications. The effects of sub-packet size and SRQ 

on the network performance is discussed in Chapter VII. 

B. NETWORK LAYER 

The network layer performs routing functions to enable the transfer of data 

packets from a source to a destination via one or more nodes. It is responsible for setting 

up, maintaining and terminating connections and involves knowledge about the structure 

of the network. A topology defines how end points of a network are interconnected and 

how data flows. Optimizing the topology is essential in terms of capacity, energy 

consumption and reliability of the network. We focus our discussion of the network layer 

on suitable topologies to describe the Seastar network structure and data flow. 

Some common basic topologies are bus, star, ring and tree [22]. Seaweb is 

normally structured with a tree topology. For Seastar, we narrow our candidates to the 

star and ring topologies, although hybrid forms might be options as well.  

A star topology typically connects all nodes to a common central node. This 

central node acts either as a hub that collects and fuses information that is received, or it 

acts as a switching device where it relays information from one node to another. In a ring 

topology the network consists of a set of repeaters connected by point-to-point links 

forming a closed loop. Information flows in any or both directions. Both topologies have  
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one crucial shortcoming: a single point of failure at the central node for the star or any of 

the nodes in a ring. We cannot tolerate full network failure and mechanisms will need to 

be implemented to avoid it. 

 

 

Figure 25 Star versus ring topology 

 

1. Star Topology 

For Seastar to operate in conjunction with Seaweb, the star topology would 

function as follows. The central node receives information from the peripheral nodes, 

fuses it and sends it as an information packet through Seaweb. The central node also 

behaves as a local command-and-control (C2) node for Seastar. A polling mechanism 

serves to avoid packet collisions, and error correction in the form of SRQ is issued as 

necessary from the central node to the peripheral nodes. The polling mechanism, which 

consists of a short utility packet containing address information, invites peripheral nodes 

to transmit data if available. Control information such as preferred output level or bit rate 

could be included. The downside of this mechanism is that it introduces overhead but it 

makes unnecessary the need for handshaking (RTS-CTS) and explicit acknowledgements 

(ACK). None of the peripheral nodes need to receive information from other peripheral 

nodes which simplifies both the network logic as well as the modem hardware. In order 

to reduce the complexity of the peripheral modems even further, the brief C2 messages  
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are transmitted at relatively low data rate and are reliably received with a simple 

demodulator. Conversely, the data transmissions from peripheral to central node are done 

at high bit rates.  

The star topology is less susceptible to network failure than the ring. The central 

node, required to run the network, is its weak point and unfortunately the only way to 

avoid full network failure in case of central node malfunction is to have a backup node 

available in the network that could assume its duty. In the close presence of multiple 

clusters this may be achieved by reassigning the peripheral nodes to neighboring LANs. 

Another option is to have a mobile node available that could replace the failed central 

modem. In summary, backup options would either require significant advance planning 

or redeployment of spare hardware.  

Once the choice for a topology is made, it is necessary to determine the most 

efficient strategy to operate the network. This is done with the aid of a simulation tool 

developed for this purpose and which is documented in Chapter VI. Early simulation 

experiments narrowed the number of strategy options for a star topology down to two. 

Both are described in more detail now.  

 

Figure 26 Candidate Seastar star topology strategies are P1D (left), which allows SRQ 
expressed by red arrows and P1E (right) that does not use this error correction 
feature. Poll and data transmissions are expressed by green and black arrows, 

respectively. 
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a. Star Topology Strategy Type P1D 

Strategy P1D, as it shall be defined here, is graphically explained in Figure 

27. It uses a short utility message, represented in the figures by a green arrow, which is 

transmitted omnidirectionally from the central node to poll a specific peripheral node. 

Upon reception, this node replies by omnidirectionally transmitting its data, preceded by 

a header containing information regarding the contents of the message such as source 

address, sequence number, message length and number of sub-packets. If the CRC of a 

specific sub-packet fails, an SRQ, represented in the figures by a red arrow, is initiated 

and, if necessary, repeated until all sub-packets have been successfully received or the 

maximum number of SRQ retries has been reached. Once the full data packet has been 

received by the central node it processes it and polls the next modem. The polling will 

continue uninterrupted. 

 

Figure 27 Graphical explanation of the P1D strategy as described in IV.B.1.a.  
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If the poll or SRQ utility packet is corrupted, no data transmission ensues 

and a time-out period for reception at the central node indicates that something has gone 

wrong. In this case a retransmission of the utility packet is issued until either the data 

packet is received or a maximum number of SRQ or poll retries has been reached. In the 

case of maximum SRQ, the packet is aborted and considered lost. In the case of a 

maximum achieved number of polls, the peripheral node maintains track of the data and 

its sequence number for transmission at the next cycle. At the next cycle, the choice can 

now be made for the central modem to either ask for the latest, most up-to-date sequence 

number (so implicitly aborting the previous number) or to have it issue an SRQ for full 

retransmission. In this last case, as well as in unforeseen situations where a packet ends 

up out of sequence, an explicit ACK for reception is issued by the central node.  

b. Star Topology Strategy Type P1E 

Strategy P1E is based on P1D but does not perform sub-packet recoveries. 

The motivation for this variation is to support network operations where low latency is a 

higher priority than transmission reliability, thus favoring a low amount of overhead. All 

corrupted packets are consequently aborted. P1E does, however, poll again upon failure 

but this is limited to one additional attempt. The description for P1E is therefore the same 

as for P1D but excludes SRQ. 

 

Figure 28 Graphical explanation of the P1E strategy as described in IV.B.1.b. 
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2. Ring Topology 

Although we will refer to a ring topology, the idea actually diverges from the 

traditional ring since the central node is included. This is not only required to connect 

Seastar to Seaweb but it also provides the possibility to perform centralized C2 duties in 

case of network failure. The main difference with the star topology is the absence of a 

polling mechanism from the central modem. Instead, a token is passed between 

neighboring peripheral nodes without interruption from the central modem. Not only does 

this reduce overhead but it also reduces the energy consumption at the central modem. A 

peripheral node is only allowed to transmit data upon reception of a token that is received 

from the previous node in the cycle. Because the token is transmitted omnidirectionally, 

address knowledge between neighboring nodes is required and included in the token. 

Data packets are also transmitted omnidirectionally but processed by the central node 

only. The data transmission is padded by the updated token, which cues the next modem 

to transmit data. It is obvious that a ring topology requires not only communications 

between central and peripheral nodes but also between neighboring peripheral nodes, 

which makes the ring less suitable for independently moving nodes.  

 

Figure 29 Candidate Seastar ring topology strategies are T2B (left), which does not use 
SRQ, and T3A (right), which allows SRQ as an integrated message within the 

token, updated by the central node every cycle. Token transmissions are 
expressed either as green or as red-green arrows and data transmissions as black 

arrows, respectively. 
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As with the star topology, RTS-CTS and ACK messages are not required but 

introducing SRQ or token retransmission is more complicated since C2 occurs on two 

levels. In case of a corrupted token, retransmission would have to be coordinated between 

neighboring nodes whereas corruption of sub-packets is handled between central and 

peripheral nodes. This complicates the network logic and forms the basis of creating two 

variations on the ring theme as described in the following subsections. 

a. Ring Topology Strategy Type T2B 

Strategy T2B involves passing a token amongst the peripheral nodes and 

can be compared to P1E in the sense that it does not provide SRQ. The central node 

receives and processes all packets that are received successfully and aborts all corrupted 

packets.  In case of a corrupted token the network would normally fail completely. 

However, the central node will sense that no data is transmitted and will retransmit the 

token to the last expected address after a time-out period. If still no data packet is 

received the central node will reinitiate the token again but now it is addressed at the next 

peripheral node in the cycle. Figure 30 provides an overview of the network logic. 

 

Figure 30 Graphical explanation of the T2B strategy as described in IV.B.2.a. 
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central node stores information regarding unsuccessful sub-packet transmission from 

each peripheral node. The token, now expressed as a red-green arrow, is designed to 

carry additional information or instructions, such as SRQ, and is updated by the central 

node. The token carries this information with it in the ring and delivers it at the target 

node. The length of the token utility packet therefore scales with the number of nodes in 

the networks but clever design can reduce the additional overhead. Upon reception of an 

SRQ, the peripheral node will both retransmit corrupted (sub-)packets and transmit new 

data in the same cycle. Unsuccessful retransmissions will generate no new retransmission 

because of long latencies for that specific message and the full packet will be aborted.  

The same time-out logic as with T2B is implemented in case of token failure. Figure 31 

summarizes the logic of T3A. 

Note that with the graphical descriptions of P1D and T3A, an unsuccessful 

poll or token generates a packet-out-of-sequence situation. This just occurs for simulation 

purposes. Actual implementation could include either packet abortion or retransmission 

in the subsequent cycle. 

 

 

Figure 31 Graphical explanation of the T3A strategy as described in IV.B.2.b. 
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V. SEASTAR PROTOTYPE IMPLEMENTATION AND SEA 
TESTING 

A. PROTOTYPE IMPLEMENTATION 

A Seastar prototype was developed to test the concept of a centralized network 

with through-water acoustic links. The following goals formed the basis for the Seastar 

prototype: 

• Verify suitability of asymmetric acoustic links in air and water, 

• Develop a prototype network, demonstrate the feasibility in air and provide 

initial performance metrics, 

• Demonstrate the feasibility in water and provide quantitative and qualitative 

analysis. 

The first two goals were achieved by performing experiments in the anechoic 

chamber and the anechoic water tanks at NPS. The last goal was achieved by an 

experiment as part of AUV Fest 2007 in Panama City, FL. 

1. Asymmetric Link Experiment 

For the asymmetric link experiment, a commercially available Teledyne Benthos 

ATM-885 subsea modem, an ATM-891 deck box and an AT-408 omnidirectional 

transducer were used. Both the ATM-885 and ATM-891 were uploaded with standard 

commercial firmware version 5.5. The modems operate in the 9–14 kHz band and are 

designed to communicate over distances up to 5 km. The modulation type can be set to 

either multi-channel MFSK with bit rates varying from 140 bits/s to 2400 bits/s or PSK 

with bit rates varying from 2560 bits/s to 15360 bits/s. Transmit power levels or source 

levels can be set at 164–185 dB re 1 µPa @ 1 m in water which corresponds to 102–123 

dB re 20 µPa @ 1 m in air. Communication ranges in the anechoic water tank varied 

from 10 cm to 4 m whereas ranges in the anechoic chamber varied from 10 cm to 1 m. 

Interaction with both the ATM-885 as well as the AT-408 through the deck box was 
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established by connecting the RS-232 feeds on the modems to two USB ports on an HP 

Pavilion DV5000 laptop computer. IOGEAR USB-to-serial adapters were used to 

connect the RS-232 devices to the USB ports. Symantec Procomm Plus provided a 

graphical user interface (GUI) to interact with the modems. 

One interpretation of an asymmetric link was tested easily. Transmitting short (9-

byte) control messages from the deck box to the ATM-885 modem followed by a long 

(up to 4096-byte) message reply was trivial. The next step was to test asymmetry with 

respect to bit rate. Both in air and water, transmitting at the lowest available bit rate (140 

bits/s) and replying at the highest possible bit rate for MFSK (2400 bits/s) produced few 

problems although some transmissions failed at 2400 bits/s. Transmitting messages at 

lower bit rates (up to 1200 bits/s) using FEC and coding was never a problem, which 

demonstrates the benefits of applying error correction techniques.  

The last asymmetry that was tested involved further increment of the bit rate by 

switching to PSK. Some occasional transmission successes at 2560 bits/s were achieved 

but this was hardly enough to make it feasible for practical application. Higher PSK bit 

rates with this setup failed in every attempt. 

 

Figure 32 Experimental setup for asymmetry tests as described in this section. 
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2. Seastar Prototype Development in Air 

Once the asymmetry possibilities were known, the Seastar prototype could 

proceed. The ATM-891 deck box and AT-408 transducer combination represented the 

central node and five ATM-885 modems served as peripheral nodes. An unsuccessful 

attempt was made to use a Brüel and Kjær PULSE analyzer for impulse response and 

frequency-time measurements and at the same time have it function as a tool to trigger 

recordings by means of a matched filter. The equipment was later replaced by a 

G.R.A.S.-type 40AF free field microphone and type 26AK 1/2" pre-amplifier 

combination, connected to the laptop and powered by a G.R.A.S.-type 12AA module. 

The application that was used to perform the time-frequency spectrum recordings and 

analysis was Spectrogram version 15.1.1  

 

Figure 33 Experimental setup for Seastar prototype in anechoic chamber as described in 
this section. 

In a later phase of the experiment the AT-408 transducer was replaced by one of 

the peripheral modems as can be seen in Figure 34. This replacement had no further 

impact on the experiment. The laptop was always connected to the central node and one 

of the peripheral nodes and served as a GUI to send command messages, manipulate 

modem and network settings, and provide real-time feedback on transmissions.  

                                                 
1 Spectogram v. 15.1, Visualization Software LLC, http://www.visualizationsoftware.com/gram.html, 

Accessed 2 December 2007. 
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The topology that was most easy to create with the available equipment was a star 

topology. A ring topology would have required software modification in the modems. 

The first step was to determine a way to implement a polling mechanism. Fortunately an 

existing 9-byte utility packet was found suitable to perform this function. The ASCII 

command “AT$BTn”, where n refers to a modem address was originally developed to 

acoustically order modem address n to transmit the contents of its data buffer. The data 

buffer is usually filled with data from a sensor that is hooked up to the serial port. For our 

purposes, an 1850-byte test message was manually uploaded and stored in the buffer of 

all peripheral modems and resided there until it was manually erased. 

 

Figure 34 Seastar prototype setup in NPS anechoic chamber showing one central node 
and four peripheral nodes. The range between the peripheral nodes is 

approximately 1.5 m. 

 

We now had a 9-byte polling message (AT$BTn) to poll any modem and have it 

respond by transmitting an 1850-byte data packet that was divided into eight 256-byte 

sub-packets, a Benthos modem feature. To introduce the asymmetric link, the poll was set 

to be transmitted at 140 bits/s, followed by a data packet transmission at 800 bits/s. The 

next step was to automate the polling mechanism. This required an algorithm that had to 

run from an external CPU that was connected to the central modem through the RS232 

connection. Since the algorithm had to be installed on a UNIX-like driven CPU during 
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the follow-on experiment at sea, the choice was made to exchange the laptop computer 

for a Linux machine. Since we abandoned the PSK modulation, there was no need to 

continue working with the commercial code and all modems were uploaded with the 

Seaweb source code, version 17.3, providing the modems with extended network 

features, such as SRQ, that would be useful in our prototype Seastar implementation. 

The C algorithm, as shown in Appendix A, is a modification to the original 

software used on the Seaweb Racom (radio/acoustic communications) gateway buoys to 

allow interaction with the Seaweb network. The polling algorithm includes several 

recovery features and additional delays to prevent network failure and performs an 

automatic restart in case of a full network crash. The challenge lay in the fact that the 

newly developed polling algorithm needed to work in conjunction with the existing 

Seaweb modem firmware. For example, the polling has to be suspended whenever a 

transmission is corrupted to allow SRQ. Upon successful transmission, the polling 

mechanism must then automatically retake control and continue the polling cycle. 

Handshaking through RTS-CTS as well as explicit acknowledgements through 

ACK utility packets was disabled with SRQ enabled by setting the modem’s S-registers 

as follows: S33=3, S34=0, S57=0. With these settings, handshaking only occurs upon 

network initialization and whenever the central modem comes out of low power state.  A 

10-second delay after data transmission was built in to avoid overlap of polling and 

retransmission of full packets in case of a packet-out-of-sequence situation. As a final 

recovery mechanism, a 10-minute timer was inserted in the code to enable an automatic 

network restart in case of full network failure.  

Upon detection of multiple simultaneous transmissions, the central node ceases 

polling for 10 minutes to allow all modems to assume a low-power state and, in doing so, 

clear all sequence-number memories. The polling, preceded by a new handshake, 

automatically resumes after this silent period. A spectrogram of a single round-trip 

transmission containing a poll and a data reply can be seen in Figure 35. 
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Figure 35 Time (horizontal axis) and frequency (vertical axis) recording in water of 9-
byte poll at 140 bits/s followed by 1850-byte data transmission at 800 bits/s.  

 

With these settings, the network is able to operate under the influence of physical-

layer faults. We will refer to a single round-trip-time (RTT) as the time required for 

transmitting a poll followed by a data transmission including delays. An average single 

RTT without retransmissions was measured to be 34.5 seconds. The exact RTT depended 

on random delays that are introduced by the Benthos modems as a built-in feature but the 

deviation was never more than 3% of the average value. For five peripheral modems this 

would mean that the average cycle time would be 173 s. This value was found to be a 

useful metric since it indicates the mean time between data transmissions from a 

particular Seastar modem. We will further refer to the cycle time as latency with units of 

seconds. The latency is also affected by the amount of retransmissions required and 

therefore implicitly indicates the reliability of a topology. If SRQ is disabled, however, 

the latency will remain constant at an unsuccessful transmission but the reliability drops. 

A second metric that does account for this and can easily be measured is the number of 

dropped packets. It is, however, desirable to evaluate this number independent of the 

amount of packets that were transmitted. We therefore normalize the number of packets 

by expressing it as a ratio of the number of unsuccessfully transmitted packets to the total 
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number of packets as a percentage.  From a network efficiency perspective, it is useful to 

know the efficiency or utilization of the channel. This third metric is defined as the ratio 

of time Ti required to transmit information bits over the total time Tt required to perform 

this transmission. The total time includes overhead caused by headers, CRC, redundancy, 

retransmissions, and necessary polling or token utility packets. As an example, Ti for 

1850 bytes at 800 bits/s would be 18.5 s, but as was shown before, Tt is 34.5 s. The 

dimensionless utilization is therefore 18.5 s divided by 34.5 s which is 0.536. In other 

words, only 54% of the channel availability was efficiently used to transmit information. 

The last metric is related to the channel utilization but expresses the efficiency in a more 

operational sense. It is defined as the number of transmitted information bits per RTT. 

This metric is further referred to as information throughput and has units of bits/s. As an 

example we will use the same data as above and determine the information throughput 

for our experimental setup to be 8 bits/byte times 1850 bytes divided by 34.5 s which is 

430 bits/s. In other words, although 800 bits/s was the physical-layer bit rate, this specific 

experimental setup only achieves a maximum network-layer bit rate of 430 bits/s, which 

is again 54%. 

Conclusively we can state that a first Seastar prototype, using a polling 

mechanism, was successfully developed, tested in air and analyzed. The analytical 

metrics that were found useful are: information throughput, channel utilization, latency, 

and dropped packets. These metrics are used throughout the rest of this research. For our 

in-air experimental network, the following values were found: information throughput 

430 bits/s, utilization 0.536, latency 173 s and a zero percentage of dropped packets, 

recognizing that these values were obtained under almost perfect test conditions by using 

the anechoic chamber. Now, we analyze the performance of this version of the Seastar 

prototype while deployed in realistic conditions at sea. 

B. EXPERIMENT PLAN 

In June 2007, a Seastar prototype was tested in water during the AUV Fest 

demonstration at St. Andrews Bay, FL. The goal was to demonstrate the feasibility in 

water of the prototype described in the previous section and provide a quantitative and 
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qualitative analysis. The plan consisted of deploying the network in shallow water in a 

moderate shipping area to observe influences of natural and man-made interference on 

the network performance. To measure network performance quantitatively in metrics of 

information throughput, channel utilization, latency and dropped packets it was necessary 

to use equipment capable of recording number and status of received poll and data 

packets as well as SRQ utility packets, all tagged with time stamps. For a qualitative 

analysis it was required to associate the successful and anticipated unsuccessful 

transmissions to the channel conditions, possible noise sources, and network settings. 

Direct access to the network to manipulate settings and observe related performance 

would allow additional quantitative and qualitative analysis data and could provide 

calibration data for future network simulations. 

The available hardware consisted of five Teledyne Benthos ATM-885 modems 

that would serve as peripheral nodes and a central Racom gateway buoy that would 

perform the function of central node and gateway to the Seastar network. To achieve this, 

the Racom was equipped with a Teledyne Benthos ATM-885RPCB modem board, an 

AT-408 omnidirectional transducer, Iridium satellite communications and FreeWave 

radio. It further contained a central processing unit (CPU) that was used to upload the 

polling algorithm as well as the original algorithm to enable manual network access. Not 

only did this allow changing network parameters but it also permitted troubleshooting 

and uploading the C program in case debugging of the code was required. Last, the 

Racom allowed local storage of network data which formed a backup in case of radio 

communications failure. Remote monitoring of the network would occur from a Seaweb 

server [39] at Naval Surface Warfare Center (NSWC) Panama City, FL. To ensure 

qualitative analysis, a moored sonobuoy,2 capable of recording raw acoustic data such as 

network transmissions, shipping, and other interference (e.g., see [40]), would be 

deployed within 200 m of the central modem. The data recorded by the sonobuoy were 

transmitted to a laptop ashore and could be analyzed real time by the Spectrogram 

application. Analysis was further informed by conductivity-temperature-density (CTD) 

                                                 
2 SeaLandAire Technologies, Inc. http://www.sealandaire.com/currenptojects.php. Accessed 2 

Decemeber 2007. 
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profiles and other local data at the experiment site, such as wind and visual and/or surface 

radar tracks, that were collected both by SPAWAR Systems Center San Diego and US 

Navy METOC personnel. 

 

 

Figure 36 Upper picture shows a peripheral modem attached to a weight, acoustic 
release and a floating body for vertical positioning and recovery. Lower pictures 

show the sonobuoy (left) and Racom buoy (right).  

 

C. EXPERIMENT SETUP 

1. St. Andrews Bay 

St. Andrews Bay is connected to the Gulf of Mexico and is part of the intra-

coastal waterway system. The Seastar test site was located 1 km east-southeast of the 

main commercial port, as can be seen in Figure 37. The water depths at the site vary from 

8 m to 13 m and the bottom consists of an acoustically absorptive mud/silt composition. 

Surface temperatures during the experiment were generally over 30 degrees Celsius and a 

moderate southwest breeze usually developed in the afternoon causing an average sea 

state of 1 (0-0.1 m).  
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Figure 37 Geographic overview of AUV Fest / UNET test site showing the Seastar 
prototype network geometry in combination with the depth contours in meters. 

Panama City’s main port lies 1 km west-northwest of the central node. 

Occasional tropical rain showers causing severe variations in the sound velocity 

profile were expected; however, none occurred during the actual data collecting phase. 

Two series of CTDs taken prior and during deployment resulted in sound-speed profiles  
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(SSPs) as shown in Figure 38. The absence of heavy rain and wind during the week 

caused the SSP at the test site to remain stable although a negative gradient developed 

near the surface.  

 

Figure 38 SSPs taken at the test site show only a slight increase in temperature over a 
period of a week and the development of a negative gradient near the surface. 

Sound propagation predictions based on the SSPs for June 7, one of the actual 

data collection days, are presented in Figure 39. This figure was generated by a Matlab 

application developed by Torres [41] that uses the Bellhop Gaussian beam tracing 

acoustic propagation model. Torres demonstrated that Bellhop is suitable for modeling 

high-frequency acoustic propagation in shallow water and performed several case studies 

for St. Andrews Bay. Even though our experiment used medium frequencies, the model 

provided useful data for determining the most suitable deployment depth for the modems 

to ensure communications. The Bellhop model shows a downward refracting 

communications channel and surface and bottom bounce paths. The almost isospeed 

channel also supports direct-path propagation, which is most favorable since it 
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experiences the least transmission loss of all multi-paths. The bottom-surface interactions 

induce expected multi-path time dispersion of 23 ms.  

 

 

Figure 39 Bellhop predictions for 7 June at a location between the Racom and T7 show a 
downward refracting communications channel that allows direct path. Multi-path 

arrivals due to bottom and surface interactions are also expected.  

 

The average multi-path delay as measured by the modems was 0.72 ms. Compared to the 

predicted maximum of 23 ms, we can conclude that the main propagation path during the 

experiment was direct path and interference due to multi-path delay is not considered to 

have been a significant factor. The nearly stationary, almost isospeed channel conditions 

therefore made the environment at the test site well suited for underwater acoustic 

communications.  

Noise sources consisted mainly of shipping, wind and sea life. Shipping noise was 

episodic, arising from small private vessels and occasional commercial vessels. Traffic 

associated with AUV Fest also contributed to shipping noise. The most significant noise 

source in our operating band, however, appeared to be interference from other 

experiments in the bay that used Teledyne Benthos modems. 

The maximum observed wind during the actual data taking was 15 knots which, 

according to the Wenz curves [17], leads to ambient noise levels of 47–50 dB on the 9– 
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14 kHz band. Although the effect of noise produced by shipping generally diminishes 

above 1 kHz as shown in Figure 6, interference from vessels crossing the network at 

close range was observed.  

Noise generated by shrimps and other sea life was observed and recorded but no 

causal interference could be verified during the trials. 

Variability in the noise was mainly dependent on the activity of the other Seaweb 

experiments being conducted in the bay and was not noticeably influenced by natural 

conditions at all. Overall, the propagation and noise conditions were favorable for testing 

the Seastar prototype network.    

2. Network Setup 

All five peripheral modems were deployed at ranges of 500 m from the central 

node (Figure 37) causing an average one-way propagation delay of 0.3 s. The geometry 

of the channel and presence of other networks in the vicinity did not allow a symmetric 

setup but this was not a requirement for the polling strategy. In accordance with the 

Bellhop propagation predictions, the modem transducers were positioned at 3 m from the 

bottom. The transmit power levels of the central node and peripherals were set to 179 dB 

re 1 µPa @ 1 m. The acoustic baud rates of the peripheral nodes and central node were 

set to 800 bits/s and 140 bits/s, respectively. The poll and data message as well as the 

SRQ, RTS-CTS and ACK settings (S33=3, S34=0, S57=0) remained unchanged from the 

in-air experiment. Based on the 500-m range and the in-air experiments, an average RTT 

of approximately 35 s was expected. 

As stated before, the control of the network and data recording were supposed to 

occur remotely using a server ashore. However, technical problems with both the Iridium 

modem and the FreeWave modem left local recording on the Racom as the only option. 

This also implied that the network could not be adjusted or manipulated once it was 

deployed, which limited the scope of the experiment. All tests were therefore 

autonomously conducted with the above settings. 
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D. NETWORK EVALUATION 

Two trials were performed. Trial 1 started on June 7 at 12:00LT and lasted until 

June 8 07:30LT. Trial 2 started on June 8 at 10:15LT and ended at 16:30LT that same 

day. Trial 2 included a controlled run by a small boat over the network. Both trials started 

with a failure from unknown causes, which activated the 10-minute out-of-action period 

that was hard-coded in the polling algorithm. It was observed that the intended 10-minute 

silent period lasted almost two hours. We hypothesize that interference from the adjacent 

Seaweb network that used similar modems is the cause for this unexpected behavior. The 

activity of these modems prevented the Seastar modems from going into a low-power 

state, which made a fresh restart impossible. Once the activity of the other network had 

ceased, the modems entered a low-power state and the restart occurred as intended. 

 

Figure 40 Summary of Seastar prototype performance in water where 99.3% of the 
transmissions were successful. 

 

During these trials, where 26 hours of network operation was achieved, a total of 

2031 successful data transmissions were made by the peripheral nodes (see Figure 40). 

Only 17 packets were initially unsuccessful, but 14 of these were recovered through 

SRQ. An additional 12 packets were dropped because the poll was never received. The 

total number of sub-packets that were corrupted was 53. The relevance of this number 

can be found when considering selective retransmissions through SRQ versus full 
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retransmission if selectivity had not been used. Instead of 34816 bytes, only 13568 bytes 

had to be retransmitted, which is a reduction of almost 60%. Only three packets were 

found out of sequence and they were all retransmitted successfully. Including the network 

failures at startup, a total of three full network self-recoveries occurred and human 

intervention in the network was never required.  

 

Figure 41 Summary of unsuccessful transmissions during Trial 1 for Addresses 3–7.  
Addresses 4, 5 and 6 experienced the most interference.  

 

 
Trial 1 

Address 3 4 5 6 7 
Sub-packets 
Corrupted 

4 
5 

3 3 
1 
3 
4 
1 

5 
5 
2 

1 

Polls corrupted 
(missed packet) 

1 3 3 1 2 

Packets out of  
Sequence 

- 2 - - - 

Packets aborted due 
to maximum SRQ 

- - 1 1 - 

Table 3 Summary of amount and description of unsuccessful transmissions during Trial 1 
for Addresses 3–7. 
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The percentage of successfully transmitted packets was 99.3%. A summary of 

unsuccessful transmissions is found in Figure 41 and Figure 42 as well as in Table 3 and 

Table 4. 

 

Figure 42 Summary of unsuccessful transmissions during Trial 2 for Addresses 3–7.  
The number of unsuccessful transmissions was too few to be of statistical 

significance but the trend is similar to Trial 1. 

 

Trial 2 
Address 3 4 5 6 7 
Sub-packets 
corrupted 

4 
3 

2 4 3 - 

Polls corrupted 
(missed packet) 

- 1 1 - - 

Packets out of 
sequence 

- 1 - - - 

Packets aborted due 
to maximum SRQ 

- - - 1 - 

Table 4 Summary of amount and description of unsuccessful transmissions during Trial 2 
for Addresses 3–7. 

We now express the performance of the Seastar prototype network in water under 

the above-described conditions in terms of the metrics used during the in-air trials. The 

average latency in water, based on the data in Figure 43, Figure 44 and Table 5, is 181 s 

compared to 173 s during the in-air experiment. Based on the latency, an information 

throughput of 408 bits/s is found with a channel utilization of 0.51. The percentage of 

dropped packets is 0.7%. Only a small portion of this performance degradation can be 

3 4 5 6 7 

Address 

Packets corrupted 

Range aborted 

Packet out of sequence  

Packet aborted 5 

10 

S
ub

-p
ac

ke
ts

 C
or

ru
pt

ed
 



 71 

attributed to the longer propagation delays. The major contribution comes from the fact 

that unsuccessful transmissions and retransmissions caused additional delays.  

 

Figure 43 Latency (vertical axis) measured during Trial 1. The peaks are due to either 
long retransmissions or full network restart.  

 

 

Figure 44 Latency (vertical axis) measured during Trial 2. The peaks are due to long 
retransmissions. 

 
 

Address Trial 1 
h:mm:ss 

Trial 2 
h:mm:ss 

3 0:03:01 0:03:00 
4 0:03:01 0:03:03 
5 0:03:01 0:03:03 
6 0:03:01 0:03:03 
7 0:03:01 0:03:00 

Table 5 Average latency for specific modems during both trials. 
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From a qualitative perspective, we would like to associate the unsuccessful 

transmissions with certain events or conditions. The sonobuoy was a superb tool for 

identifying interference sources. Four unsuccessful transmissions occurred due to the 

passage of a small boat, another four were caused by a large boat and four transmissions 

were corrupted due to interference from the nearby Seaweb network, although it must be 

mentioned that most of the Seaweb transmissions did not interfere with Seastar 

operations. The cause of one unsuccessful transmission could not be determined. All 

other failures occurred at time intervals during which the sonobuoy data were not logged. 

Recordings of marine mammals’ sonar occurring in the Seastar band did not indicate any 

negative interference. An example of an SRQ and data retransmission due to the passage 

of a small boat is shown in Figure 45. 

 

Figure 45 Interference due to passage of small boat causing SRQ. 

Addresses 4, 5 and 6 required the most retransmissions and the majority of the 

dropped packets also originated from these addresses. Knowing the causal relation 

between interference from both shipping and the Seaweb modems, it is not a surprise to 

find that these addresses are both in the shipping channel and in close proximity to the 

Seaweb network. On the other hand, no reasons can be found for the exceptionally good 

performance of Address 7, since it was closest to the port facilities and also close to the 

Seaweb network. 

We conclude this chapter and the experiment sequence with the following 

statements. The Seastar prototype has been successful in air and sea trials. The star 
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topology in combination with a polling mechanism has proven to be a robust strategy that 

is able to operate autonomously for a long period. It needs to be mentioned that we were 

not able to manipulate network parameters and that the results were obtained under 

favorable conditions. Although interference from shipping and Seaweb was observed, we 

must take into account the fact that Seastar will be operating in a higher frequency band. 

Since the anticipated operational environment has similarities with the test site, further 

testing with future high-frequency modems in the same environment is strongly advised. 

Although the network was reliable, it was found that the performance was limited. The 

low data rates in combination with the polling (TDMA) strategy resulted in relatively 

high latencies and a low information throughput. This was mainly due to the built-in 

random delays and the additional 10 s delay that was required to ensure smooth 

cooperation between the Seaweb software and the C polling algorithm. Smart integration 

of both algorithms and reducing the delays in the hardware could greatly increase the 

network performance. Further gains may be realized by optimizing the network strategy. 

Since existing hardware does not allow easy implementation of strategies such as P1D, 

P1E, T2A and T3A, this will be done in the next chapter though simulation. 
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VI. NETWORK SIMULATION 

Having demonstrated a Seastar prototype using available Seaweb equipment, we 

now explore various networking strategies by simulating them on a computer. The 

simulation allows us to analyze, evaluate, and optimize various candidate strategies. The 

output metrics of the simulations are presented in terms of channel utilization, 

information throughput, latency, and dropped packets. The results of the experiments 

with the prototype network described in Chapter V provide a perfomance benchmark. 

In the first section of this chapter we discuss the setup of the simulation. The next 

section shows parametric results for the four network strategies (P1D, P1E, T2B and 

T3A) described in Chapter IV. We conclude with a summary of pros and cons for these 

strategies. This then forms the basis of case studies that are performed in Chapter VII.  

A. SIMULATION SETUP 

Matlab source code for the network simulation is fully shown in Appendix B. We 

designed the simulation to provide the possibility of analyzing multiple network types 

simultaneously under similar conditions. Network parameters, to be described soon, can 

be set either as single value or as an array of values. The simulation is time and event 

driven and depends on random processes to trigger certain events, such as failure of a 

transmission. In order to generate statistically relevant results where the effect of outliers 

is insignificant, each simulation is repeated a large number of times. The simulation 

duration as well as the number of simulation repeats can be set manually. This is also the 

case for the SNR threshold levels above or below which a certain event will occur. Even 

though these levels are arbitrary, the events that are triggered behave like they are caused 

by noise so that the effects of performance degradation on the communctaions can be 

studied. Each networking strategy is evaluated simultaneously under the same conditions 

and each strategy is initiated with the same set of input parameters. All the output metrics 

are averaged over time and over the number of simulation repeats.  
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1. Input Parameters 

The code has multiple input parameters that determine the performance of a 

specific strategy. Since no general underwater acoustic LAN network data are available, 

the data obtained from our experimental Seastar prototype, such as delays between 

transmissions, length of headers and size of utility packets, served in many cases as 

“general” input data. Often, the values are far from optimum but since this was the only 

way of calibrating the model versus a real system and since all strategies experience the 

same effects of these input parameters, a comparison between the four candidate 

strategies is still valid. Since many parameters have relatively similar effects on each 

strategy, a selection of critical parameters had to be made to emphasize the difference in 

character of each strategy. The following critical parameters are assessed to be useful and 

significant for expressing the fundamental differences in network strategy and the effects 

of varying these parameters are studied in the next section: 

• Bit rate (high), used for transmitting data packets. 

• Bit rate (low), used for transmitting utility packets and occasionally for 

retransmissions. 

• Number of peripheral nodes. 

• Packet size. 

• Sub-packet size. 

• Maximum number of poll or token retries. 

• Maximum number of SRQ or ACK retries. 

• Trigger level. 

Each parameter is assigned a default value for the simulation as shown in Table 6. 

Most of these values are based on the settings of the Seastar prototype and the Teledyne 

Benthos ATM-885 modems as used during the in-water experiments. Although we expect 

performance improvements for a future version of Seastar compared to the prototype,  
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such as higher bit rates and shorter delays, we do not attempt to optimize the settings 

before all relevant parameters have been studied. Such optimization will be attempted for 

the case studies in Chapter VII. 

PARAMETER REF  UNITS DEFAULT   PARAMETER REF  UNITS DEFAULT  
Number of nodes n [ ] 6   packet size Dp [bytes] 2048 
wake up time twu [s] 0.4   sub-packet size Dsp [bytes] 256 
acquistition time tacq [s] 0.28   bit rate (data) Rb1 [bits/s] 800 
size of utility packet  dut [bytes] 9   bit rate (utility) Rb2 [bits/s] 140 
size of crc dcrc [bytes] 2   maximum SRQ retries msrq [ ] 3 
size of header dnw [bytes] 14   maximum ACK retries mack [ ] 3 
delay poll-data td1 [s] 1   maximum poll retries mpoll [ ] 3 
delay data-poll td2 [s] 2.9   maximum token retries mtoken [ ] 3 
delay manual td3 [s] 0   trigger level 0=min 1=max α [ ] 0.05 
delay data-SRQ td4 [s] 0.7   simulation period T [hrs] 10 

time out period td5 [s] 7.5   simulation repeats A [ ] 100 

Table 6 Input parameters, including abbreviations used for reference. Most of the default 
values are based on the observed performance of the Seastar prototype during the 

in-water experiment.  

2. Functions and Threshold Levels 

The simulation code uses functions to perform certain calculations. For example, 

function INI.m is used to set network parameters, and function COLLECTDATA.m is 

responsible for collecting the performance data of the networks initialized with these 

parameters. Each network strategy is implemented as described in Chapter IV by a 

function containing multiple loops to simulate an event-driven network operation of finite 

duration. The first strategy function that was inserted in the simulation, however, 

represented an almost exact copy of the Seastar prototype and was used to test and 

calibrate the several other functions so that the output values matched the performance of 

both the in-air as well as the in-water experiments. 

Each strategy function calls event functions to perform specific actions such as 

polling, data transmission or SRQ. Many of these functions contain pseudo-random 

number generators that are summoned each time the function is called. The numbers that 

are generated are compared to threshold levels that are set by a single parameter in the 

INI.m function, known as the threshold α. This is done for convenience, and to ensure a 
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consistent relation between these levels. The levels that are set by α are called L1, L2, L3, 

L23, L4, and L5 and determine the probability of events to occur, as can be seen in 

Figure 46. If a random number is generated between L1 and L2, it is interpreted as an 

unsuccessful poll or token and so a data packet is not transmitted from the peripheral 

node. Depending on the strategy, a retransmission will follow until the maximum number 

of retransmission attempts is reached. If a poll or token is successfully received by a 

peripheral node, a new random number is generated. If the value of this number lies 

between L2 and L3, the data packet is considered corrupted and the transmission is 

unsuccessful. The level L23 determines if the failure involves the header of the packet or 

one or more sub-packets. In the case of a corrupted header, a time-out period is activated, 

followed by a full retransmission if the network strategy permits. In the case of one or 

more corrupted sub-packets, a retransmission follows, again depending on the strategy, 

until the full packet is successfully received or until the maximum number of 

retransmissions has been made. The success of a retransmission is determined by L4. The 

level L5 just sets the lower level to zero.  

These sequences of events, including retransmissions and dropped packets, then 

have an impact on the RTT and/or the amount of data transmitted. Flags can be set by 

functions to memorize actions that require follow up during the subsequent cycle, such as 

retransmissions in case of T3A or the occurrence of a packet-out-of-sequence situation.  

 

Figure 46 Graphical representation (not to scale) of the organization of levels as set by 
threshold α. The levels determine the probability of a certain event to happen. 

L1=1 
L2= 1-α 

L3=1-2α 
L23=L4=α 
L5=0 

L2 

L3 

L5 

transmission 
successful 

Header 
corrupted 

sub-packet 
corrupted 

L23 
L4 

poll/token/ACK 
unsuccessful 

retransmission 
successful 

retransmission 
unsuccessful 

L1 



 79 

Because of the random occurrences of events and the large variations in output 

that this process generates, our performance analysis depends on a Monte Carlo-type 

method to find statistically significant output values. Although this method, as introduced 

in [42], describes a statistical approach to study differential equations that occur in 

various branches of the natural sciences and since we do not provide these differential 

equations, the method is applicable to our case since it finds the most likely outcome of a 

multi-parameter process. By having the simulation produce a multitude of randomly 

generated possible outcomes and average them, we find a most likely behavior of a 

specific strategy under certain conditions. The Monte Carlo method requires a significant 

number of outcomes, hence the multiple repetitions of a network simulation over a 

significantly long time. As Table 6 shows, all simulations were conducted for a simulated 

time of 10 hours and averaged over 100 realizations. To illustrate this numerically, we 

consider an average performance outcome (e.g., latency=160 s) for the four strategies 

using the default settings of Table 6 in a noise-free environment (α=0). During these 100 

realizations of 10-hour network operations, approximately 135,000 transmissions 

occurred and were used in calculations to estimate a most probable outcome. This count 

varies, of course, with changing parameters (e.g., longer packets reduce the amount of 

transmissions, higher bit rates increase this amount) but it shows that the number of 

events is sufficiently large for applying a Monte Carlo-like approach. We will now 

discuss how the output parameters are obtained. 

3. Output Metrics 

Channel utilization, information throughput, latency, and dropped packets are 

measured as follows. Each address receives a poll or token utility packet and transmits its 

data. The total time xmitT , including overhead and retransmissions required for performing 

this round-trip transmission and the total amount of information DATA including 

retransmitted packets, is stored for each address. The simulation also keeps track of the 

number of dropped and successful packets. These variables are used to update the total 

transmission time and total transmitted information for each node (modemT  and modemD , 

respectively),  for each cycle (cycleT  and cycleD , respectively)  and for the total simulation 
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duration ( totalT  and totalD , respectively). The latency is calculated by summing cycleT  for 

each cycle. The information throughput over the period T is calculated by dividing totalD  

by totalT . The channel utilization over the period T is obtained by taking the ratio of the 

information throughput ( total totalD T ) and the bit rate 1bR . The percentage of dropped 

packets during the period T is simply the ratio of the dropped packets over the total 

number of transmitted packets. Finally, all the calculated values are averaged over the 

total number of realizations A, resulting in a set of statistically significant output 

parameters for channel utilization, information throughput, latency, and dropped packets. 

4. Limitations 

The simulation has certain limitations in representing the performance of the 

candidate network strategies. First of all, the strategies themselves are ideal models of 

possible future implementations. Packets ending up out of sequence, for example, can 

easily be avoided in this simulation since corrupted packets will either be retransmitted or 

dropped. In order to analyze actions responding to the detection of a packet that is out of 

sequence, a packet that is dropped after an unsuccessful poll or token is artificially placed 

out of sequence. The network now has to solve this situation during its next cycle. In a 

real situation this packet would just be dropped or retransmitted depending on the 

network design. 

Although the simulation has been calibrated using experimental data in terms of 

performance metrics, the threshold α is just a value between 0 and 1 and the levels that 

depend on α do not represent true noise levels or SNR values. The simulation can 

therefore not be used to analyze the performance in a specific geographic region or to 

determine network settings prior to operational deployment. This would require a more 

sophisticated model and additional environmental input parameters. 

Another important limitation is that the propagation delays are set for a fixed 

inter-nodal range of 500 m and therefore do not provide the flexibility to analyze network  
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performance when repositioning the nodes. Nor does it support analysis of mobile nodes. 

Generality of the simulation was not possible due to time constraints, but should be 

relatively easy to implement. 

Overall, the simulation is found useful for providing performance comparisons of 

the four network strategies of interest. The code is flexible enough to analyze other forms 

of networks strategiesof so required. We now proceed by using the code for a parametric 

analysis of the strategies P1D, P1E, T2B, and T3A in terms of channel utilization, 

information throughput, latency, and dropped packets. 

B. PARAMETRIC ANALYSIS 

Throughout this section, we vary one relevant parameter at a time, while keeping 

all others default as given by Table 6. In some instances it is necessary to study the 

effects of a certain parameter in more depth, which may require adjusting other 

parameters. Deviations from the default settings will be clearly announced. Setting 

parameters to values that have earlier in this thesis shown not yet realistic is justified in 

anticipation of future technical improvements. Another justification is that trends become 

more clear and differences more profound when analyzing over a larger range. 

1. Bit Rate 

Recall that the asymmetric concept involves two bit rates, a high bit rate for data 

transfer 1bR  and a low bit rate for utility packets2bR . The simulation for analysis of 1bR  is 

conducted for 1bR = [500, 1000, 4000, 10000, 20000, 40000] bits/s. Increasing 1bR  over 

this range, as is done in Figure 47, which shows the effect on utilization, information 

throughput, latency and dropped packets, does not result in a linear improvement of the 

information throughput and results in very low channel utilization for all network 

strategies. At large values for 1bR , the network performance is limited by the amount of 

overhead, consisting of (propagation) delays and utility packets. This also sets a lower 

limit for the latency. 
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To study the influence of communications overhead in more depth we consider 

the following input parameters: 0.2wut =  s, 0.14acqt =  s, 1 0.7dt =  s, 2 0.7dt =  s, 5 3.5dt =  

s and 2 4000bR =  bits/s. With these improved values, a better information throughput is 

observed (see Figure 48 for P1D) but overhead remains a constraint.  

  
 

  

Figure 47 Increasing the bit rate 1bR  (horizontal axis), expressed in terms of utilization, 

throughput, latency and dropped packets, has a limited effect on improving the 
network performance because of the increasing relative influence of overhead. All 

other input parameters other than 1bR  are set to default values. 

 

It may be obvious that P1D proved to be the most reliable network type under 

these conditions because of its SRQ ability. The number of dropped packets in the 

simulation is independent of the bit rate. Based on experiments described in Chapter IV it 

should be taken into account that higher bit rates, when caused by a reduction of 
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redundant bits, generally do result in an increase in transmission failures. T2B 

demonstrates the best information throughput and lowest latency but at the cost of 

dropping 5–6% of the packets. Overall, all network strategies were affected to a similar 

extent by an increased 1bR  and performance for all strategies was limited by the 

correspondingly increased influence of overhead.  

 

Figure 48 Reducing communications overhead, here shown for P1D, improves the 
information throughput of the network but still constrains perfromance at high 
Rb1. Input parameters for this study compare the default values with optimized 

values.  

Increasing the utility packet bit rate by setting 2bR = [50 100 200 400 800] 

improves the information throughput and reduces latency for all strategies. Strategy T3A 

especially benefits from a reduced overhead because time consumed by the additional 

hop is reduced. Notice that in Figure 49, unlike with 1bR , the channel utilization increases 

with increasing 2bR . Although increasing 2bR  improves the network performance, we 

anticipate a relatively higher 1bR  in future Seastar implementations and so it must be 

recognized that increasing the bit rate has its physical limits due to the inevitable 

overhead caused by delays and network headers. 
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Figure 49 Increasing 2bR  (horizontal axis) improves network performance and 

efficiency in terms of information throughput and channel utilization, and 
simultaneously reduces latency. All input parameters other than 2bR  are set to 

default values. 

2. Packet and Sub-packet Size 

In general, larger information packets pD  result in good channel utilization and 

information throughput since the percentage of overhead is reduced. For an analysis 

where pD = [256, 512, 2048, 8192, 16348, 32768] bytes, it can be observed (see Figure 

50) that the advantage in terms of information throughput and channel utilization of 

network type T2B is slightly reduced at packet size larger than 7 kilobytes (kbytes), 

although it still shows the lowest latency. P1D and T3A have about the same improved 

information throughput at larger packet sizes. Increasing packet size seems favorable but 

it unfortunately also results in a longer latency (see Figure 50). 
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Figure 50 Increasing the size of packets pD  (horizontal axis) improves the information 

throughput and the channel utilization but has a negative effect on the latency. All 
input parameters other than pD  are set to default values.   

 The latency, however, can easily be reduced by increasing 1bR . Figure 51 shows 

the effect of packet size with increased 1bR  (10000 bits/s) and 2bR  (4000 bits/s) and 

setting 0.2wut =  s, 0.14acqt =  s, 1 0.7dt =  s, 2 0.7dt =  s, 5 3.5dt =  s for P1D. Not only 

does this reduce latency, it also further improves the network performance in terms of 

information throughput. Increasing the packet size therefore needs to be considered in 

conjunction with other parameters but again, the negative effects of overhead are a 

limiting factor on information throughput.   
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Figure 51 Simultaneously increasing packet size (horizontal axis) and bit rate (dashed 
line) improves both the information throughput (left) as well as the latency (right), 

as is shown here for P1D. 

The percentage of dropped packets is unaffected by the packet size but a potential 

risk for longer latencies develops when noise levels increase and full packets need to be 

retransmitted, as is shown in Figure 52, where 0.2α =  and the other parameters are set to 

default values.  

  

Figure 52 Increasing size of packets in a “noisier” environment ( 0.2α = ). Full packet 
retransmissions cause long latencies for SRQ-able strategies. Non-SRQ strategies, 

on the other hand, drop an unacceptably large percentage of packets. All input 
parameters other than pD  and α, are set to default values. 

We now turn our attention to the effect that the length of sub-packets has on the 

network performance and set spD = [64, 128, 256, 512, 1024, 2048] bytes, with 

pD = 2048 bytes. It should be mentioned that the spD  parameter does not affect P1E and 
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T2B since these two strategies lack the provision to retransmit data packets. Varying the 

sub-packet size shows us some interesting results for network types P1D and T3A as 

shown in Figure 53. 

  

  

Figure 53 Reducing the size of sub-packets spD  (horizontal axis) shows an optimum 

value near spD ≈ 500 bytes under default conditions ( 0.05α = ) for P1D and T3A. 

Since P1E and T2B do not use SRQ, changing spD  does not have any effect. All 

input parameters other than spD , are set to default values. 

Both show a maximum value for channel utilization and information throughput 

and a minimum value for latency, resulting in an optimum sub-packet size at spD ≈ 500 

bytes. At values of spD  below the optimum, the network performance is degraded due to 

the additional CRC overhead associated with a larger number of sub-packets. At values 

of spD  above the optimum, the network performance is degraded because of the lengthy 

retransmissions that need to be made. The position of the optimum is determined by the 
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amount of noise that is introduced. As an example, we set 0.2α =  in Figure 54 to show 

that increased noise levels cause the optimum to shift to the smaller sub-packet sizes as 

may be expected.  

 

Figure 54 The position of the optimum size of sub-packets spD  is determined by the 

amount of retransmissions that is required. Increasing the “noise” by setting 
0.2α =  causes the optimal spD  to shift to smaller values, in this case 

100spD ≈ bytes. All input parameters other than spD  and α, are set to default 

values. 

In general, large sub-packets will cause longer delays in a noisy environment 

since many retransmissions are anticipated. Breaking up the packet into many small sub-

packets reduces the latency. In relatively noise-free environments, however, the negative 

influence of CRC overhead due to the larger number of sub-packets contributes to a 

decreased information throughput as well as longer latency. 

Increasing bit rates and reducing delays (1 10000bR =  bits/s, 2 4000bR =  bits/s, 

0.2wut =  s, 0.14acqt =  s, 1 0.7dt =  s, 2 0.7dt =  s, 5 3.5dt =  s and 0.2α = ) removes the 

presence of an optimum spD  and favors T2B and T3A over P1D and P1E as is shown in 

Figure 55.  
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Figure 55 Operating at higher bit rates with reduced delays as described above reduces 
the appearance of an optimum value for spD  and favors T2B and T3A over P1D 

and P1E.   

In general, small sub-packets are preferred in noisy environments and T3A is the 

preferred strategy under these conditions. 

3. Number of Peripheral Nodes 

Recall that our simulation uses fixed propagation delays whereas a change in the 

number of nodes actually requires adjusting these ranges. For example, from Table 2 we 

find a range reduction of 146 m for 4n =  which agrees with 0.097 s for a sound speed of 

1500 m/s. Even when considering a round trip transmission of 10 s, the difference in 

transmission time is less than 1%, so ignoring the range adjustment has a negligible effect 

on the calculations. As expected, the number of nodes only has an effect on latency. 

Figure 56 shows that, except for T3A, there is no impact on channel utilization, 

information throughput or dropped packets when analyzing for n = [4, 6, 8, 10, 12] 

peripheral nodes.  
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Using default settings, T3A shows a degraded performance in terms of utilization 

and information throughput with increasing number of modems.  

  

  

Figure 56 For P1D, P1E and T2B, the number of peripheral nodes n (horizontal axis) 
only affects the latency of the network. The information throughput of T3A 

decreases with increasing n because of the increasing length of the token. All 
input parameters other than n, are set to default values. 

A surprising result arises when the low bit rate 2bR , which determines the 

transmission speed of utility packets such as the token, is increased from the initial value 

of 140 bits/s to higher speeds. For this analysis we set 1 10bR =  kbits/s. Figure 57 shows 

the appearance of a maximum value for information throughput, shifting to the right 

(larger number of modems) for increasing 2bR  and finally resulting in the reverse effect, 

namely an improved performance for increasing number of nodes. Recall that T3A 

requires a hop through the central node to update the token and that each additional node 

adds bytes to the token. The explanation for the phenomenon observed in Figure 57 can 



 91 

be found in the fact that at low 2bR  (e.g., 140 bits/s) the performance of T3A is 

dominated by the overhead due to the increasing length of the token. At high 2bR , the 

reduced impact of the “central node hop” through the addition of more peripheral nodes 

dominates the relative loss of an increased token length. Careful design of the token as 

well as applied bit rates for network type T3A is therefore paramount.  

 

Figure 57 Increasing the number of peripheral nodes (horizontal axis) at 2 140bR =  bits/s 

( 1 10bR =  kbits/s) results in a decreased information throughput for T3A. 

Increasing 2bR  as shown to  2bR =  [300, 600, 1000, 2000], reverses this effect. 

In general it can be stated that more nodes mean a higher sensor/modem density at 

the cost of increased latency. 

4. Number of Retransmissions 

The maximum number of retransmissions m determines how many times a 

specific packet is allowed to be retransmitted before it is dropped. For this analysis we set 

srq ack poll tokenm m m m m= = = = = [1, 2, 3, 4, 5, 6, 8]. The effect of increasing this 

parameter clearly depends on the amount of noise imposed upon the network and in order 

to observe a sufficient number of retransmissions and emphasize the differences, we set 

0.2α = . Since P1E and T2B do not allow for retransmitting corrupted data or utility 

packets, the maximum number of retransmissions does not affect these strategies. The 
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outcome of this analysis (see Figure 61), should be interpreted with some reserve. Recall 

that, for simulation purposes, a packet is put out of sequence once the maximum number 

of poll or token retransmissions has been achieved. Usually, an event like this does not 

happen very often but since the simulation for this specific parameter includes extremities 

(e.g., 0.2α =  in combination with small values for m), packets do end up out of sequence 

frequently. When that happens, full retransmission occurs at a bit rate of 2bR  instead of 

1bR , which has a dramatic effect on the network performance of P1D and T3A. Although 

the results for low m may underestimate the performance, the analysis is useful because it 

shows the advantage of being able to retransmit corrupted packets. At the same time it 

also shows that the performance levels off at 5n > . 

  

  

Figure 58 Effect of number of retransmission retries m (horizontal axis) for “very noisy” 
conditions ( 0.2α = ). The ability to retransmit packets ensures a relatively good 

information throughput at a low dropped packet percentage, at the cost of 
increased latency. All input parameters other than m and α, are set to default 

values. 



 93 

In general, network strategies that are capable of retransmitting packets ensure 

reliable data transfer in terms of dropped packets and information throughput. For 

“noisy” conditions, the cost of longer latency for P1D and T3A is acceptable, certainly 

when considering the large number of dropped packets that arise from P1E and T2B.   

5. Noise 

The introduction of the effects of “noise,” represented qualitatively by the 

threshold α, has, in some cases, already been discussed in combination with previous 

parameters. In the figures, α is expressed as a percentage and can be interpreted as a 

qualitative variable that determines the success rate of a transmission. The threshold does 

not directly refer to SNR, SL, NL or TL, but can be used as a “knob” to set system or 

channel degradation. As an example, 0.1α =  means that 10% of packets of any type are 

initially unsuccessful, and the experienced α  during the in-water experiments was 0.01. 

  

  

Figure 59 The effect of “noise” on the output metrics is set by the threshold (horizontal 
axis). All input parameters other than α, are set to default values. 
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For α = [0, 0.01, 0.05, 0.1, 0.15, 0.2] the simulation puts P1D and T3A in favor 

over P1E and T2B in terms of information throughput when 0.1α > . This value for α 

shifts up when setting 1 10000bR =  bits/s, 2 4000bR = bits/s, 0.2wut =  s, 0.14acqt =  s, 

1 0.7dt =  s, 2 0.7dt =  s, 5 3.5dt =  s, as can be seen in Figure 60 but the trend remains the 

same.  

 

Figure 60 Parametric analysis for α or packet error rate (horizontal axis) at higher bit 
rates and reduced delays as described above. The strategies shift relative from 

each other but still show a similar trend as with the default settings. 

The best metric to analyze the performance of network strategies under the 

influence of noise is, however, not always information throughput. In case of 0.05α > , 

the dominant factor for choosing a strategy will almost certainly be the amount of 

dropped packets, which is unacceptably high for P1E and T2B. Even when the maximum 

number of allowed retransmissions for P1D and T3A is reduced to 1m=  (Figure 61), 

P1E and T2B show a relatively very poor performance in terms of dropped packets. 

Referring again to the in-water experiments that were done with the prototype, where 

0.01α = , we state that T2B would perform well enough under these low-noise 

conditions, but over the full range, when reliable message delivery is required, T3A 

performs best, followed by P1D. 
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Figure 61 Even though P1D and T3A are only allowed one retransmissions ( 1m= ), they 
remain the preferred strategy under “noisy” conditions (horizontal axis) when 

considering the percentage of dropped packets.  

C. TRADEOFFS 

It should be clear by now that the optimum strategy does not exist. Defining an 

optimum strategy depends on operational requiremens, such as required reliability, 

latency and throughput. We have also seen that channel noise plays an important role in 

determining the strategy. In order for the reader to comprehend the results of the 

parametric analysis in a nutshell we try to summarize the generally observed trends in 

two ways. 

  First, we summarize the results of the parametric analysis graphically (see Figure 

62), and indicate the effect that increasing or reducing the value of a certain parameter 

has on channel utilization, information throughput, latency and dropped packets. As an 

example, increasing the data bit rate 1bR  generally has a negative (red) effect on channel 

utilization (upper left field) but a positive (green) effect on information throughput. It 

must be emphasized that Figure 62 shows general effects and that a specific strategy or 

changing certain parameters may influence or change to what extent a certain effect is 

observable. Also note that an additional parameter dt  is expressed explicitly to clarify 

that the parametric analysis includes effects of reducing delays as part of the analysis 

when overhead is reduced.  
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Figure 62 Summary of parametric analysis. Columns indicate increasing (arrow up) or 
decreasing (arrow down) parameter values and the effect of this on the metrics 

used (rows). 

Noise is the only parameter that generally cannot be influenced and that has a 

profound effect on the preferred network strategy. To express the influence of noise on 

network performance more specifically, we dedicate a second summary to the 

relationship between the performance of a specific network strategy and the various 

parameters, under low-noise ( 1%α = ) and high-noise ( 20%α = ) conditions, 

respectively.  
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Figure 63 Performance of network strategies for 0.01α =  (upper table) and 0.2 (lower 
table), respectively, for designated parameters. T2B excels in very low-noise 

environments. In noisy environments, P1D performs best in terms of reliability 
whereas T3A performs best in terms of information throughput and latency. 

 
 



 97 

Figure 63 reveals a couple of interesting trends, although one should interpret the 

figure with some reserve since the performances of some strategies are sometimes 

comparable (e.g., see Figure 50). Nevertheless, the following hard conclusions can be 

made. 

Strategies P1E and T2B perform poorly under noisy (e.g., 0.02α > ) conditions 

because of the inability to retransmit packets. Strategy P1E also shows a relatively poor 

performance even under good conditions. In the case of both 0.01α =  and 0.2α = , P1D 

and T3A show almost always a comparable performance, which is good because it allows 

the choice between two different strategies depending on requirements. Strategy T3A 

performs slightly better in terms of channel utilization, information throughput and 

latency whereas P1D scores better in terms of reliability since it almost always maintains 

a zero dropped packet rate.  

Considering all possible environmental conditions we therefore conclude the 

parametric analysis by stating that T2B shows superior performance in terms of 

utilization, information throughput and latency but is only useful if reliability in terms of 

dropped packets does not have the highest priority. Strategy P1E shows the poorest 

performance but may be preferred because it is independent of relative positioning 

between neighboring nodes. If reliability of data transfer is desirable (which it almost 

always is) then P1D and T3A both perform well. T3A is the fastest and indicates the 

highest throughput but is less flexible in terms of geometry because it depends on 

communication between neighboring nodes. Strategy P1D maintains the highest 

reliability because of its ability to retransmit multiple times but at the cost of longer 

latencies. We must not forget that hybrid or other forms of the above strategies are 

possible. 
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VII. CASE STUDIES 

In this chapter we use the simulation to consider possible future Seastar 

applications. The ideas for the case studies are generally inspired by the Underwater 

Persistent Surveillance (UPS) experiment that was conducted as part of the Monterey Bay 

2006 field experiments [43]. 

A. ELECTROMAGNETIC RECONNAISSANCE 

The first case study involves a fixed underwater reconnaissance system, 

consisting of magnetometers to detect magnetic anomalies associated with the passage of 

ships or submarines (e.g., see Figure 64). Upon detection, the magnetic signature of the 

target is determined and a rough tracking is obtained. The system is based on a Seaweb 

wide-area network where each Seaweb node serves as the central node for a Seastar LAN 

and each peripheral node includes a magnetic anomaly detector. We examine the network 

performance of a single Seastar LAN.  

 

Figure 64 Schematic representation of a surveillance network with, in this case, four 
peripheral nodes with magnetic sensors having a 300-m detection range.  
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The operational requirements are as follows. The Seastar LAN should cover 1 

km2 and within this area, a target on a fixed heading should pass within detection range 

of at least two sensors to allow rough tracking. The magnetic sensor has a maximum 

detection range of 300 m. The target has a maximum target speed of 30 knots 

( 55≈ km/hr). Near-real-time updates consisting of fused data from the central node is 

required with a latency of less than one minute. A raw data packet containing signature 

data that has been preprocessed by the magnetic sensor is assumed to have a size of 2 

kbytes. Delivery of packets needs to be ensured, keeping in mind that the latency should 

not exceed 60 s. The network should operate under noisy channel conditions and 

disruption because the passage of loud targets should be expected. 

The system default settings are optimized and are displayed in Table 7. Since the 

percentage of dropped packets needs to be minimized and the network is required to 

operate in noisy conditions, P1E and T2B are found not suitable and are not analyzed. 

 

PARAMETER REF  UNITS DEFAULT   PARAMETER REF  UNITS DEFAULT  
Number of modems n [ ] var   packet size Dp [bytes] 2000 
wake up time twu [s] 0.1   sub-packet size Dsp [bytes] var 
acquistition time tacq [s] 0.1   bit rate (data) Rb1 [bits/s] var 
size of utility packet  dut [bytes] 8   bit rate (utility) Rb2 [bits/s] var 
size of crc dcrc [bytes] 2   maximum SRQ retries msrq [ ] 3 
size of header dnw [bytes] 12   maximum ACK retries mack [ ] 3 
delay poll-data td1 [s] 0.4   maximum poll retries mpoll [ ] 3 
delay data-poll td2 [s] 0.4   maximum token retries mtoken [ ] 3 
delay manual td3 [s] 0   trigger level 0=min 1=max α [ ] var 
delay data-SRQ td4 [s] 0.4   simulation period T [hrs] 10 

time out period td5 [s] 3   simulation repeats A [ ] 100 

Table 7 Settings for reconnaissance case study. The value “var” refers to a variable that is 
an outcome of the simulation.  

Our analysis first focuses on the required bit rate 1bR  (see Figure 66). For 

1bR = [2000, 4000, 6000, 8000, 10000] bits/s, 2 2000bR = bits/s, 4n = , 256spD = bits, 

and 0.01α = , we find that 1 2000bR >  bits/s keeps the latency well below the desired 60  
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s. Both P1D and T3A do not differ much from each other in performance and the small 

percentage of dropped packets (e.g., 0.01%≈ ) under these conditions for T3A is 

acceptable. 

 

 

Figure 65 Effects of bit rate 1bR  for case study A on the performance of a surveillance 

network as described above with 2000pD =  bytes, 4n = , 2 2000bR =  bits/s, 

256spD =  bits, 0.01α = . For all 1bR  shown, the latency is well below 60 s. 

Increasing the packet size to 10000pD =  bytes and keeping the settings as above 

(see Figure 66), requires a minimum 1 6000bR =  bits/s. This implies that MFSK 

modulation as described in Chapter III is not suitable for this kind of network within the 

available bandwidth, when the packet size is too large.  

The previous chapter has shown that latency depends largely on the number of 

nodes. Since latency is a crititcal metric, it is necessary to analyze the impact that the 

number of peripheral nodes has on the latency for this case study. Based on the previous 
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bit rate analysis and MFSK-achievable bit rates, we set 1bR = 3000 bits/s, 

2 2000bR = bits/s, and let [ ]5,6,7,8,9,10n =  while keeping all other input parameter 

values as above. For these settings, the maximum number of peripheral nodes that is 

allowed by the latency requirement is limited to 9n = . The results are shown in Figure 

67. Higher bit rates would allow more nodes for latencies less than 60 s; lower bit rates 

would limit the maximum number of nodes even more.  

 

Figure 66  Effects of bit rate 1bR  for case study A on the performance of a surveillance 

network as described above with 10000pD =  bytes, 4n = , 2 2000bR =  bits/s, 

256spD =  bits, 0.01α = . For these settings, at least 1 6000bR =  bits/s is required 

to hold latency to 60 s. 

  

Figure 67 The number of nodes has a profound effect on latency and limits the 
maximum number of nodes n for case study A and 1bR = 3000 bits/s, 

2 2000bR = bits/s to 9n = . 
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We continue the analysis with the settings 4n = , 1bR = 3000 bits/s and 

2 2000bR = bits/s and now focus on the network performance under various “noise” 

conditions by letting α = [0, 0.01, 0.05, 0.1, 0.15, 0.2]. It is clear from Figure 68 that P1D 

outperforms T3A in terms of reliability at a small additional cost in latency of about two 

seconds. 

 

Figure 68 Noisy conditions for case study A with 4n = , 1bR = 3000 bits/s and 

2 2000bR = bits/s result in a degradation of T3A performance. The cost in latency 

that has to be paid to ensure packet delivery (P1D) is two seconds.  

Considering that P1D is the most reliable and suitable network under all 

conditions, we conclude this study by determining a suitable number of sub-packets for 

0.1α =  and letting spD = [50, 100, 500, 1000, 2000] as shown in Figure 69. As is shown 

on the left plot, 500spD =  bytes results in the lowest latency for P1D. The additional 

amount of overhead required for these sub-packets does not affect the performance of the 

network in low-noise situations as is seen on the right plot.  

Latencies that can be expected for this application with settings as described 

above are dependent on the size of the data packet. As can be seen in Figure 70, an 

increase in packet size of two orders of magnitude results in unacceptably long latencies. 
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Figure 69 The optimum size of sub-packets for case study A with 0.1α = (left) is  
500spD ≈ bytes and does not affect the performance in low-noise conditions 

( 0.01α = , right). 

 

 

Figure 70 Latency increases linearly for pD = [10k, 100k, 1M] bytes. 

We summarize the results of this case study as follows. For a Seastar application 

that requires high reliability and has low latency, P1D appears to be the most suitable 

network strategy. The simulation assumed that all nodes transmit data within a cycle and 

showed that a network consisting of 4 peripheral nodes is capable of realizing 2 kbytes 

data transmissions at realistic data rates (1 3000bR =  bits/s and 2 2000bR =  bits/s) with a 

latency that remains below one minute. Transmitting 10-kbytes data packets cannot be 

achieved using MFSK within our latency restrictions. Packet sizes that are orders of 

magnitude larger in size result in unacceptably high latencies.    
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B. HIGH-SPEED TARGET TRACKING 

To allow analysis of operational use of P1E and T2B, we formulate a variation on 

the first case study. Consider a dense sensor network that can be deployed rapidly with 

the purpose of detecting high-speed threats such as torpedoes or surface vessels. Such 

threats require quick reaction and do not tolerate long latencies or large data packets 

containing detailed target description. A node will therefore only report the detection in 

terms of an acoustic or electromagnetic “hit” due to the passage of a possible target. 

Based on the node’s location, the threat direction can be discerned. The large node 

density allows sensor overlap (redundancy) and short latencies are preferred over 

occasional transmission failures. The allowed latency is set to 20 s. The default network 

settings can be found in Table 8. 

 

Figure 71 Schematic representation of a high density Seastar network as described in 
case study B. 

The first parameter that we analyze, is the number of nodes with the following 

settings: 1 8000bR =  bits/s, 2 2000bR =  bits/s, 0.01α =  and n = [6, 10, 14, 18, 22] nodes. 

The channel utilization and information throughput are definitely not optimal but the 

values for latency look promising (see Figure 72). The token ring strategies (T2B and 

T3A) perform much better than the polled strategies (P1D and P1D) and latencies below 

20 seconds for 14 nodes are achieved. 

50
0 

m
 

target track 1000 m 
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PARAMETER REF  UNITS DEFAULT   PARAMETER REF  UNITS DEFAULT  

Number of modems n [ ] var   packet size Dp [bytes] 128 
wake up time twu [s] 0.1   sub-packet size Dsp [bytes] 128 
acquistition time tacq [s] 0.1   bit rate (data) Rb1 [bits/s] Var 
size of utility packet  dut [bytes] 8   bit rate (utility) Rb2 [bits/s] Var 
size of crc dcrc [bytes] 2   maximum SRQ retries msrq [ ] 1 
size of header dnw [bytes] 12   maximum ACK retries mack [ ] 1 
delay poll-data td1 [s] 0.4   maximum poll retries mpoll [ ] 1 
delay data-poll td2 [s] 0.4   maximum token retries mtoken [ ] 1 
delay manual td3 [s] 0   trigger level 0=min 1=max Α [ ] Var 
delay data-SRQ td4 [s] 0.4   simulation period T [hrs] 10 

time out period td5 [s] 3   simulation repeats A [ ] 10 

Table 8 Default network settings for a high-density, low-latency network (case study B). 

 

  

  

Figure 72 Effect of the number of nodes for case study B on latency for 1 8000bR =  

bits/s, 2 2000bR =  bits/s and 0.01α =  shows promising values. 



 107 

Assuming that response times of 20 s are reasonable, our focus now shifts toward 

the required bit rate. Figure 73 shows that bit rates ( 1bR ) exceeding 2400 bits/s (T2B) and 

3300 bits/s (T3A) for 14 nodes ( 14n = ) and 0.01α =  produce latencies below 20 s, 

meaning that MFSK is a suitable modulation scheme under low-noise conditions. Noisy 

conditions, represented by 0.2α = , result in too much distortion and latencies exceeding 

25 s should be anticipated. Deploying multiple lower density clusters is a means to 

reduce the latency even more. Again, T2B and T3A are superior in terms of latency. 

Figure 74 shows the impact of the packet size on the network performance. 

  

Figure 73 Latency versus bit rate (1bR ) for 14 nodes ( 14n = ) shown for 0.01α =  (left) 

and 0.2α =  (right). The dotted horizontal line marks the desired 20 s latency for 
case study B. 

  

Figure 74 Latency versus packet size (pD ) for 14 nodes ( 14n = ) shown for 0.01α =  

(left) and 0.2α =  (right). The dotted horizontal line marks the desired 20 s 
latency 
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In summary, a Seastar network that demands a very low latency at a high sensor 

density can only transmit very compressed data packets. T2B is by far the most suitable 

network strategy but suffers a large percentage of dropped packets in noisy environments. 

T3A is the best alternative, allowing some form of retransmission but this comes at the 

cost of a 15% longer latency. 

C. MOBILE SWARM 

The next case study involves underwater surveillance using a swarm of mobile 

nodes. As an example, Figure 75 depicts the use of gliders or crawlers. To allow 

comparison of the candidate network strategies, the condition that is imposed on this set 

of mobile nodes is that the swarm maintains its formation while proceeding through the 

water. The maximum range from central node to the most distant peripheral node is 500 

m, allowing all neighboring peripheral nodes to communicate with each other as well as 

with the central node. The central node collects large data packets from the peripheral 

nodes and fuses them into more compact data sets. These compiled data sets can then 

either be uploaded to a fixed Seaweb node, or moored gateway buoy, when in the vicinity 

or transmitted via Iridium when surfaced.    

 

Figure 75 Swarms of UUVs, or crawlers, collecting data, forming a mobile Seastar 
network. 

500 m 

500 m 
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Unlike the first case study, this Seastar network is not limited by a latency 

requirement since data uploads from the central node are infrequent, non-real-time 

events. The type of data is left unspecified, but we assume large data packets (pD = 1 

Mbyte) that are collected over a long period and, because of the relatively large node 

density, an occasional lost packet is acceptable. The general settings are summarized in 

Table 9, where “var” refers to a set of values that are specified through simulation. 

Strategies P1E and T2B are not considered because of unreliable performance in noisy 

conditions. 

PARAMETER REF  UNITS DEFAULT   PARAMETER REF  UNITS DEFAULT  
Number of modems n [ ] var   packet size Dp [bytes] 1.000.000 
wake up time twu [s] 0.1   sub-packet size Dsp [bytes] var 
acquistition time tacq [s] 0.1   bit rate (data) Rb1 [bits/s] var 
size of utility packet  dut [bytes] 8   bit rate (utility) Rb2 [bits/s] var 
size of crc dcrc [bytes] 2   maximum SRQ retries msrq [ ] 2 
size of header dnw [bytes] 12   maximum ACK retries mack [ ] 2 
delay poll-data td1 [s] 0.4   maximum poll retries mpoll [ ] 2 
delay data-poll td2 [s] 0.4   maximum token retries mtoken [ ] 2 
delay manual td3 [s] 0   trigger level 0=min 1=max Α [ ] var 
delay data-SRQ td4 [s] 0.4   simulation period T [hrs] 10 

time out period td5 [s] 3   simulation repeats A [ ] 100 

Table 9 Settings for mobile swarm case study. The value “var” refers to a variable that is 
an outcome of the simulation. 

In order to get a feeling for information throughput and latencies with this data 

packet size, we first do a parametric analysis of bit rate 1bR = [2000, 4000, 6000, 8000, 

10000] bits/s, where 2 2000bR = bits/s, 6n = , 10spD = kbytes, and 0.01α = . The results 

(see Figure 76) show latencies in the order of hours, which is unacceptably high. Even if 

these long latencies were allowed, they would affect the sensor sampling rate. To 

illustrate this, consider the following example. Sampling 1 minute of data results in a 1-

Mbyte data packet. It takes two hours before all nodes have transmitted their data 

packets, which implies that no other data can be collected in that time frame. This reveals 

a complicated relation between sampling rate, packet size and bit rate which should be 

carefully considered.  
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Further increasing the bit rate by an order of magnitude is unrealistic and, instead, 

we reduce the packet size to 100pD =  kbytes. Packet size, especially in combination 

with a large number of nodes, is therefore a limitation in general for a Seastar LAN. With 

the reduced packet size, acceptable latencies (8 to 13 minutes) are achieved for 6 to 10 

kbits/s, respectively (see Figure 77) and both P1D and T3A perform well. MFSK is not 

sufficient to achieve these data rates and therefore other modulation schemes should be 

explored. 

  

Figure 76 The effect of large data packets ( 1pD =  Mbyte) for case study C. The results 

show unacceptably high latencies for 1bR = [2000, 4000, 6000, 8000, 10000] 

bits/s. 

  

Figure 77 Reduced packet size ( 100pD =  kbytes) shows latencies of 8 to 13 minutes for 

a total of 6n = peripheral nodes and 1 6000bR ≥  bits/s (case study C). 
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We now study the effect of adjusting the number of nodes for two cases. The first 

case assumes recoverable mobile peripheral nodes, allowing the implementation of more 

sophisticated processors that remove the asymmetry in bit rates. For this case, 

1 2 8000b bR R= =  bits/s. The second case considers disposable mobile peripheral nodes 

that use 1 8000bR =  bits/s but 2 2000bR =  bits/s. Both cases assume 100pD =  kbytes, 

10spD =  kbytes,  0.01α =  and n = [2, 4, 6, 8, 10, 12, 14] nodes. 

Figure 78 shows that increasing 2bR  at these data rates does not have significant 

effect on the latency which is consistent with keeping the design and cost of  the 

communications part of the peripheral nodes low. The linear relation between number of 

nodes and latency and causes latencies exceeding 20 minutes for 14n >  nodes. One 

possible way to overcome this is to deploy two smaller mobile Seastar networks 

collecting data simultaneously while keeping latencies low. This, however, would require 

measures to avoid interference. 

  

Figure 78 Latency versus number of modems for 1 2 8000b bR R= =  bits/s (left) and 

1 8000bR =  bits/s with 2 2000bR =  bits/s (right). 

 

The analysis is finalized by a study of performance under the influence of noise 

by letting α = [0, 0.01, 0.05, 0.1, 0.15, 0.2] for 1 8000bR =  bits/s with 2 2000bR =  bits/s 

and 6n =  nodes. Figure 79 shows that P1D performs better, as expected. The gain of 

accepting 4% more dropped packets at 0.2α =  when choosing for T3A instead of P1D is 
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a 10% reduction in latency, recognizing that the simulation generates a delaying artificial 

packet-out-of-sequence situation that may not be realistic. 

  

Figure 79 Latency (left) and dropped packets (right) versus increasing noise when P1D 
is allowed only 2 retransmissions. 

 

Optimizing for the size of sub-packets gives only a 1% improvement in network 

performance (see Figure 80). In order to avoid abundant overhead in low-noise 

conditions spD  should not be less than 2 kbytes.  

  

Figure 80 The effect of varying the size of sub-packets on channel utilization (left) and 
latency (right) for 0.1α = . 

 

This case study reveals that the latency requirement imposes a restriction on the 

allowed size of data packets. It also reveals a complex relation between sampling rate, bit 
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rate, packet size and number of nodes. These issues can not be solved by further 

increasing bit rates because the available bandwidth is limited and more sophisticated 

modulation schemes, such as PSK or OFDM, are not yet found reliable enough for 

practical purposes. Solutions have to be found at the application layer in terms of data 

compression, or through the use of multiple Seastar clusters.  

For this case study, P1D proved to be the most reliable network strategy. The 

additional gain in terms of latency that T3A gives only shows up strongly under noisy 

conditions. Taking into account the additional geometry restriction that T3A brings 

along, the optimum strategy in a mobile Seastar network would be P1D. 
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VIII. CONCLUSIONS 

A. RESULTS 

For a given transmission range of 500 m, a link budget analysis has shown that, in 

the presence of wind, an optimum carrier frequency can be found near 41 kHz. A 

minimum SL of 106 dB re 1 µPa @ 1 m is required to achieve a 1aSNR =  at the receiver.  

MFSK is the most robust, readily available modulation technique for Seastar 

underwater acoustic links. An analytical expression was developed to evaluate the 

relation between bandwidth, optimum number of bits/symbol and bit rate. The outcome 

of this evaluation depends on the bandwidth definition of a sinc-function. From a 

hardware perspective, the useable bandwidth BWx and bit rate Rb are limited by the 

physical properties of the transducer but a BWx of 20 kHz, centered near a carrier 

frequency of 41 kHz, resulting in maximum Rb of 3300 bits/s should be achievable. It 

was theoretically shown that OFDM could increase Rb by an order of magnitude for the 

same BWx. The energy budget for central and peripheral modems is asymmetric in the 

sense that the energy of the central node required to operate the network is two orders of 

magnitude larger than that of a peripheral node. 

A prototype Seastar was implemented using available Seaweb modems. 

Experiments were performed, both in air and water, with the Seastar prototype using a 

polling strategy. The experiments show that the concept is viable and that the prototype is 

able to operate persistently without human intervention. Integration of the polling 

algorithm, reduction of delays and a smart design of the polling utility packet would 

increase the performance significantly. New modem hardware capable of transmitting at 

higher bit rates would further increase the performance. 

The network simulations gave an insight into the effect that certain network 

parameters have on the performance. For applications that require low latency and accept 

low transmission reliability, a token strategy without retransmissions is the best 

candidate. In general, however, reliable communications are required and therefore SRQ-
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capable network strategies are preferred. Polling with transmission shows the best 

performance in terms of reliability whereas token-based networking with retransmission 

performs slightly better in terms of latency and information throughput and channel 

utilization. 

Case studies confirm the above conclusions and show at the same time that the 

optimum Seastar network strategy does not exist. Network optimization fully depends on 

the operational requirements and boundary conditions that are imposed upon the network. 

B. RECOMMENDATIONS FOR FUTURE WORK 

Future research should focus on questions that have not been addressed in this 

thesis such as the integration of the Seastar LANs with Seaweb and prevention of inter-

LAN interference. A study that includes geometry and the use of mobile nodes may 

generate new ideas or network strategies. 

In-depth studies in future modulation types such as OFDM, PSK and QAM that 

may apply to underwater acoustic links are available but do not yet show the desired 

results for Seastar application in water. If these techniques would show MFSK-like 

robustness, the network performance in terms of bandwidth efficiency and achievable bit 

rates would greatly improve. Developments in this field should be closely followed.  

Further in-water and in-air experiments under varying conditions and in different 

test environments could improve the simulation model that was used and provide more 

accurate data regarding network performance. A calibration between measured noise 

levels and simulated trigger levels would allow more realistic performance. 

C. IMPACT 

Although this thesis revealed some Seastar limitations in terms of packet size, bit 

rate and latency, the Seastar concept has the potential to increase node density at 

affordable cost to the US Navy Seaweb wide area network. 
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APPENDIX A. POLLING ALGORITHM DEVELOPED IN C 

This polling algorithm is a modification to a code for allowing communications 

with Seaweb modems that was originally developed by Chris Fletcher from SPAWAR 

Systems Center, San Diego. In order to reduce the amount of code in this thesis, only the 

modified part containing the essentials of the polling algorithm is shown. 

 

/* Polling Algorithm for Seastar Prototype 
/* Editor: Bjorn Kerstens 
/* Apr-Jun 2007 
  
/* Determine input availibity*/ 
   int result,keyboard_read; 
    
/* Determine polling variables 
   Assume central hub = address 1, assume peripheral hubs have addresses 2-nrperiph*/ 
   int i,j,cmdsize,length; 
    
   time_t start,stop, startcrashdelay, stopcrashdelay; 
   double delay, crashdelay; 
 
   /*double delay;*/ 
   char cmd[8]; 
   char *checkstr1, *checkstr2, *checkstr3, *errorstr1, *errorstr2, ... 
   *errorstr3, *errorstr4, *crashstr1, *crashstr2, *crashstr3, ... 
   *lowpstr1, *lowpstr2, *lowpstr3 ; 
 
/* Initialize Inputs*/ 
 
   fd_set inputs; 
   fd_set stdin_input; 
   struct timeval timeout;  
 
FD_ZERO(&inputs);      
 
while (1)  
   {     /* loop forever until CTRL-C*/ 
 
/*This part starts the polling sequence*/ 
for(i=3;i<8;i++) 
      { 
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          /* Set timer*/ 
           timeout.tv_sec = 0; 
           timeout.tv_usec = 500; 
 
           FD_SET(0,&inputs); 
 
           result = select(1,&inputs,NULL,NULL,&timeout); 
 
           /* Check for Errors */ 
      if (result < 0) 
        { 
         perror("select failed"); 
         exit(-1); 
        } 
      } 
/* This part contains the polling algorithm*/ 
      else if (result == 1) 
        { 
       delay=0; 
          cmdsize=sprintf(cmd,"at$bt%d\r\n",i); 
       
          if ((atoi(argv[2]) == 1)) 
             { 
              write(STDOUT,&cmd,cmdsize); 
             } 
 
  write(fd,&cmd,cmdsize); 
             write(fs,&cmd,cmdsize); 
 
             checkstr1 = NULL; 
   checkstr2 = NULL; 
   checkstr3 = NULL; 
 
  errorstr1 = NULL; 
   errorstr2 = NULL; 
   errorstr3 = NULL; 
  errorstr4 = NULL; 
        
  crashstr1 = NULL; 
             crashstr2 = NULL; 
             crashstr3 = NULL; 
 
 lowpstr1 = NULL; 
 lowpstr2 = NULL; 
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 lowpstr3 = NULL; 
 
/* This part looks for strings CRC:Pass, Aborted or abort to determine success or failure 
of a transmission*/ 
 
 while(checkstr1 == NULL && checkstr2 == NULL && checkstr3 == NULL ... 
     && errorstr1 == NULL && errorstr2 == NULL && errorstr3 == NULL ... 
     && errorstr4 == NULL && crashstr1 == NULL && crashstr2 == NULL ... 
     && crashstr3 == NULL && lowpstr1 == NULL && lowpstr2 == NULL && 
lowpstr3 == NULL)  
 { 

       start=time(0); 
         res=read(fd,buf,255); 
        buf[res]='\0';  
    
         if ((atoi(argv[2]) == 1)) 
         { 
          write(STDOUT,&buf,res);  
   } 
 
   write(fs,&buf,res);  
 
   checkstr1 = (char *)strstr(buf,"C:P"); 
   checkstr2 = (char *)strstr(buf,":Pa"); 
   checkstr3 = (char *)strstr(buf,"Pas"); 
 
   errorstr1 = (char *)strstr(buf,"Abo"); 
   errorstr2 = (char *)strstr(buf,"bor"); 
   errorstr3 = (char *)strstr(buf,"ort"); 
   errorstr4 = (char *)strstr(buf,"abo"); 
    
   crashstr1 = (char *)strstr(buf,"WAI"); 
              crashstr2 = (char *)strstr(buf,"AIT"); 
              crashstr3 = (char *)strstr(buf,"IT_"); 
 
   lowpstr1 = (char *)strstr(buf,"owp"); 
   lowpstr2 = (char *)strstr(buf,"wpo"); 
   lowpstr3 = (char *)strstr(buf,"pow"); 
 
      if (crashstr1 || crashstr2 || crashstr3 || lowpstr1 || lowpstr2 || lowpstr3) 
                        { 
                        crashdelay=0; 
                        startcrashdelay=time(0); 
                        while (crashdelay<600) 
                              { 
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                               res=read(fd,buf,255); 
                               buf[res]='\0'; 
                                                
                               if ((atoi(argv[2]) == 1)) 
                                  { 
                                write(STDOUT,&buf,res);  
                                  } 
                               write(fs,&buf,res); 
                               stopcrashdelay=time(0); 
                               crashdelay=difftime(stopcrashdelay,startcrashdelay); 
                              } 
                        } 
   } 
/* Time delay to prevent cross talk after " *!*Packet OOS" situation*/ 
  while(delay<10) 
  { 
   res=read(fd,buf,255); 
              buf[res]='\0'; 
   string = (char *)strstr(buf,">"); 
/*This part looks in buf for the modem delimiter ">" and sends a time stamp to STDOUT 
and the datafile*/ 
   if (string)  
   { 
    (void)time(&timeval); 
  
                   if ((atoi(argv[2]) == 1)) 
                   { 
              write(STDOUT,ctime(&timeval),26); 
     } 
  
    write(fs,ctime(&timeval),26); 
   } 
    
              if ((atoi(argv[2]) == 1)) 
              { 
    write(STDOUT,&buf,res); 
           } 
                         
   write(fs,&buf,res); 
   stop=time(0); 
   delay=difftime(stop,start); 
  } 
 } 
 
   } 
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APPENDIX B. NETWORK SIMULATION ALGORITHMS 

The function INI.m is used to insert data for simulation and set parameters. The 

bracketed values are set up to contain arrays.  

 

function [number_modems t_wu t_acq d_ut d_crc d_nw t_delay1 t_delay2... 
    t_delay3 t_delay4 t_delay5 data_set baudrate1 baudrate2 maxretries... 
    L_sp A T alfa L1 L2 L3 L23 L4 maxCTS maxACK maxPOLL maxTOKEN]=INI 
  
    number_modems=[14];  % number of peripheral modems       def=6 
  
    t_wu=0.1; % duration of wake-up tones [s].         default=0.4 
    t_acq=0.1; % duration of acquisition tones [s].     default=0.28 
    d_ut=8; % bytes in utility packet.               default=9  
    d_crc=2;        % bytes in CRC.                           default=2 
    d_nw=12;      % bytes in network header.               default=14 
     
    t_delay1=0.4;   % [s] delay measured btwn poll-data default =1 
    t_delay2=0.4;   % [s] delay measured after data xmit default =2.9 
    t_delay3=0;      % [s] additional delay in prototype default =0 
    t_delay4=0.4;   % [s] delay between data-SRQ order default =0.7 
    t_delay5=3;       % [s] (S7) - acoustic response timeout default =7.5 
         
    data_set=[64 128 256 512 1024];     % length of single datapacket (information) to be 
transmitted [bytes] 
    L_sp=[128];       % length of subpacket [bytes] default=256 
     
    baudrate1=[8000];     % [bps]                              default =800 
    baudrate2=[2000];     % [bps]                              default =140 
    maxretries=[1];      % maximum number of retries    default =3 
    maxCTS=1;            % (not used)                         default =1 
    maxACK=[1];          % maximum number of ACK retries default =3 
    maxPOLL=[1];         % maximum number of POLL retries default =3 
    maxTOKEN=[1];        % maximum number of TOKEN retries default =3 
         
    A=100    % amount of times that the simulation will be executed... 
                   %  in order to get reliable averages  default =100 
    T=10;          % simulation period [hrs]   default =10 
                   %  (e.g T=1 means simulate network for a period of 1 hour) 
                             
    alfa=[0.2];    % trigger level   (0-1)                  def=0.05  
    
    if alfa == 0 
        L1 = 0, L2 = 0, L3 = 0, L23(m3) = 0, L4(m3) = 0; 
    else 
        L1=1;        L2=1-alfa.*1;        L3=1-alfa.*2;        L23=alfa; 
        L4=alfa;    L5=0; 
    end 
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The function COLLECTDATA.m executes the simulation and collects the 

outcome under the variable name “results”. 

 

function[results]=COLLECTDATA 
  
results=[POLL1d POLL1e TOKEN2b TOKEN3a]; 
 
 

The function PLOTDATA.m takes the output of COLLECTDATA.m and creates 

figures to display the results. It summarizes the input parameters that were used for the 

plots under the variable “settings.” Figures can be plotted for one parameter or two 

parameters at the same time. 

 
function[settings]=PLOTDATA(results) 
  
[number_modems t_wu t_acq d_ut d_crc d_nw t_delay1 t_delay2... 
    t_delay3 t_delay4 t_delay5 data_set baudrate1 baudrate2 maxretries... 
    L_sp A T alfa L1 L2 L3 L23 L4 maxCTS maxACK maxPOLL maxTOKEN]=INI; 
settings=[number_modems t_wu t_acq d_ut d_crc d_nw t_delay1 t_delay2... 
    t_delay3 t_delay4 t_delay5 data_set baudrate1 baudrate2 maxretries... 
    L_sp A T alfa L1 L2 L3 L23 L4 maxCTS maxACK maxPOLL maxTOKEN]; 
clf; 
  
% Run COLLECTDATA function FIRST !!! 
  
DPARA=0; 
xname = 0; 
yname = 0; 
tag={' POLL1d' ' POLL1e' ' TOKEN2b' ' TOKEN3a'}; 
  
% split up results matrix 
  
SIZE = size(results); 
SIZEX = SIZE(2)/7; 
SIZEY = SIZE(1)/4; 
  
% determine single parameter or double parameter plot 
  
if SIZEX > 1 
    DPARA = 1; 
end 
  
if DPARA 
     
    if length(baudrate1)>1 
        xname= 'Bit Rate (bits/s)'; 
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        xdata = baudrate1; 
    end 
  
    if length(number_modems)>1 
        if xname==0 
            xname= 'Number of Modems'; 
            xdata = number_modems; 
        else 
            yname= 'Number of Modems'; 
            ydata = number_modems; 
        end 
    end 
  
    if length(data_set)>1 
        if xname==0 
            xname= 'Size of Packet (bytes)'; 
            xdata = data_set; 
        else 
            yname= 'Size of Packet (bytes)'; 
            ydata = data_set; 
        end 
    end 
     
    if length(L_sp)>1 
       if xname==0 
            xname= 'Size of Subpacket (bytes)'; 
            xdata = L_sp; 
        else 
            yname= 'Size of Subpacket (bytes)'; 
            ydata = L_sp; 
       end 
    end 
  
    if length(maxretries)>1 
       if xname==0 
            xname= 'Number of POLL/TOKEN/SRQ/ACK retries'; 
            xdata = maxretries; 
        else 
            yname= 'Number of POLL/TOKEN/SRQ/ACK retries'; 
            ydata = maxretries; 
       end 
    end 
     
    if length(baudrate2)>1 
       if xname==0 
            xname= 'Low Bit Rate (bits/s)'; 
            xdata = baudrate2; 
        else 
            yname= 'Low Bit Rate (bits/s)'; 
            ydata = baudrate2; 
       end 
    end 
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    if length(t_delay3)>1 
       if xname==0 
            xname= 'Built-in Delay (s)'; 
            xdata = t_delay3; 
        else 
            yname= 'Built-in Delay (s)'; 
            ydata = t_delay3;             
        end 
    end 
     
    xdata 
    ydata 
        
   for i=1:3 
    ii=i; 
    if ii>5; 
        ii=ii+1; 
    end    
     
    figure(1) 
    clf; 
        subplot(3,3,ii) 
        pcolor(ydata,xdata,results(1:SIZEY,(i-1)*SIZEX+1:i*SIZEX)); 
        shading interp 
        xlabel(yname); 
        ylabel(xname); 
        caxis([0.2 0.4]); 
        colorbar; 
        title(strcat('Channel Utilization' , tag(i))); 
             
    figure(2) 
    clf; 
        subplot(3,3,ii) 
        pcolor(ydata,xdata,results(SIZEY+1:2*SIZEY,(i-1)*SIZEX+1:i*SIZEX)); 
        %shading interp 
        xlabel(yname); 
        ylabel(xname); 
        %caxis([0.2 0.4]); 
        colorbar; 
        title(strcat('Information Throughput' , tag(i))); 
    
    figure(3) 
    clf; 
        subplot(3,3,ii) 
        pcolor(ydata,xdata,results(2*SIZEY+1:3*SIZEY,(i-1)*SIZEX+1:i*SIZEX)); 
        shading interp 
        xlabel(yname); 
        ylabel(xname); 
        %caxis([0.2 0.4]); 
        colorbar; 
        title(strcat('Latency' , tag(i))); 
         
    figure(4) 
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    clf; 
        subplot(3,3,ii) 
        pcolor(ydata,xdata,results(3*SIZEY+1:4*SIZEY,(i-1)*SIZEX+1:i*SIZEX)); 
        %shading interp 
        xlabel(yname); 
        ylabel(xname); 
        caxis([0 50]); 
        colorbar; 
        title(strcat('Dropped Packets' , tag(i))); 
   end 
     
else 
     
    if length(baudrate1)>1 
        xname = 'Bit rate - data (bits/s)'; 
        xdata = baudrate1; 
    elseif length(number_modems)>1 
       xname = 'Number of modems'; 
       xdata = number_modems; 
    elseif length(data_set)>1 
       xname= 'Size of packet (bytes)'; 
       xdata = data_set; 
    elseif length(L_sp)>1 
       xname= 'Size of sub-packet (bytes)'; 
       xdata = L_sp; 
    elseif length(maxretries)>1      
       xname= 'Number of POLL/TOKEN/SRQ/ACK retries'; 
       xdata = maxretries; 
    elseif length(baudrate2)>1 
       xname= 'Bit rate - utility packets (bits/s)'; 
       xdata = baudrate2; 
    elseif length(L2)>1 
       xname= 'Trigger level (%)'; 
       xdata = alfa*100; 
    end 
  
    figure(1) 
    clf; 
    plot(xdata,results(1:SIZEY,:),'-o'); 
    legend('P1D','P1E','T2B','T3A',-1); 
    xlabel(xname); 
    ylabel('Channel utilization'); 
     
    figure(2) 
    clf; 
    plot(xdata,results(SIZEY+1:2*SIZEY,:),'-o'); 
    legend('P1D','P1E','T2B','T3A',-1); 
    xlabel(xname); 
    ylabel('Information throughput (bits/s)');     
     
    figure(3) 
    clf; 
    plot(xdata,results(2*SIZEY+1:3*SIZEY,:),'-o'); 
    legend('P1D','P1E','T2B','T3A',-1); 
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    xlabel(xname); 
    ylabel('Latency (s)'); 
     
    figure(4) 
    clf; 
    plot(xdata,results(3*SIZEY+1:4*SIZEY,:),'-o'); 
    legend('P1D','P1E','T2B','T3A',-1); 
    xlabel(xname); 
    ylabel('Dropped packets (%)'); 
       
end 
 

The function POLL1d.m is used to simulate network strategy P1D. 

 
function[result1d, energy1d]=POLL1d 
  
clear, 
  
%************************************************************************ 
% 
% Initiate values through <ini.m> function 
% 
%************************************************************************ 
[number_modems t_wu t_acq d_ut d_crc d_nw t_delay1 t_delay2... 
    t_delay3 t_delay4 t_delay5 data_set baudrate1 baudrate2 maxretries... 
    L_sp A T alfa L1 L2 L3 L23 L4 maxCTS maxACK maxPOLL maxTOKEN]=INI; 
         
for m1=1:length(baudrate1)      % baudrate1 
for m2=1:length(data_set)       % data length 
for m3=1:length(L2)             % noise 
for m4=1:length(maxretries)     % maxretries 
for m5=1:length(L_sp)           % subpacket length 
for m6=1:length(number_modems)  % number_modems 
for m7=1:length(baudrate2)      % baudrate2 
        
    % calculate # subpackets and duration of utility packet 
  
    N_sp(m5)=ceil(data_set(m2)/L_sp(m5));     %number of subpackets 
    t_ut=(d_ut+d_crc)*8/baudrate2(m7)+t_acq;     % transmission time of utility packet 
     
%************************************************************************ 
% 
% Do the simulation a couple of times to get a good average of the  
% metrics you're interested in 
% 
%************************************************************************* 
  
  for a=1:A;        % run simulation 'a' times    
     
% reset all values to zero 
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    OOS=0; 
    DOOS=0; 
    OOSFLAG(1:number_modems(m6))=0; 
    OOSFLAG1=0; 
    OOSFLAG2=0; 
    REPOLL=1; 
     
    d_total=0; 
    t_total=0; 
    latency1=0; 
    latency(a)=0; 
    pktabort(a)=0; 
    pktcorrect(a)=0; 
     
    d_modem1(1:number_modems(m6),1)=0; 
    d_modem2(1:number_modems(m6),1)=0; 
  
    t_modem1(1:number_modems(m6),1)=0; 
    t_modem2(1:number_modems(m6),1)=0; 
     
    cycle=1; 
     
    %********************** 
    %energy calc. only !!! 
    TP=0; 
    TI=0; 
    Wrcv=0.5;   %[W] 
    Wxmt=0.1;   %[W] 
    %********************* 
     
    while t_total<(3600*T)   
         
        for address=1:number_modems(m6); 
         
    %********************************************************************* 
    % In case OOSFLAG flag is set to 1, the transmission consists of the new 
    % packet sent at bit rate1 and the old packet at bit rate2 
    %********************************************************************* 
     
            if OOSFLAG(address) 
                                 
                [OOS,DOOS,OOSFLAG1]=oos(m1,m2,m3,m4,m5,m6,m7,... 
                    OOSFLAG(address),REPOLL); 
                 
                OOSFLAG(address) = OOSFLAG1; 
                 
            end 
                        
            %********************************************************** 
            % info packet     
            %********************************************************** 
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            [INFO,DATA]=info(m1,m2,m3,m4,m5,m6,m7,REPOLL); 
                         
            dice1=rand(1); 
             
            %********************************************************** 
            % utility or info packet corrupted 
            %********************************************************** 
             
            [SRQ,DATA,OOSFLAG2]= srq1(m1,m2,m3,m4,m5,m6,m7,dice1,... 
                OOSFLAG2,REPOLL); 
             
            OOSFLAG(address) = OOSFLAG2; 
             
            %********************************************************** 
            % POLLING utility packet 
            %********************************************************** 
             
            [POLL,POLLFLAG]=poll(m1,m2,m3,m4,m5,m6,m7,dice1,REPOLL);    
                    
                   if POLLFLAG 
                       INFO=0; OOS=0; 
                       DATA=0; DOOS=0; 
                       OOSFLAG(address)=1; 
                   end 
                    
            %********************************************************** 
            % add all events 
            %********************************************************** 
             
            t_xmit=POLL+INFO+SRQ+OOS; 
            data(m2)=DATA+DOOS; 
             
            if (DATA==0) & (POLLFLAG==0) 
                pktabort(a)=pktabort(a)+1; 
            elseif DATA~=0;                 
                pktcorrect(a)=pktcorrect(a)+1; 
            end 
  
            t_modem1(address,cycle+1)=t_modem1(address,cycle)+t_xmit; 
            t_modem2(address,cycle+1)=t_xmit; 
            d_modem1(address,cycle+1)=d_modem1(address,cycle)+data(m2)*8; 
            d_modem2(address,cycle+1)=data(m2)*8; 
         
            DATA=data_set(m2);          %reset data 
            OOS=0;                          %reset OOSFLAG correction 
            DOOS=0;                         %reset OOSFLAG correction 
            OOSFLAG1=0; 
            OOSFLAG2=0; 
             
            counter=counter+1; 
      
     %************************************************************ 
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     % ENERGY BUDGET: ONLY IN NOISE FREE SIMULATION!!!!!! 
     % Instruction: set A=1; T=1; Only for single input parameter 
     %************************************************ 
%         TP = TP + POLL - t_delay1;                               
%         TI = TI + INFO - (t_delay2+t_delay3);          
%         Prcv = TP*Wrcv; 
%         Pxmt = (TI)*Wxmt; 
%         Phr = (Prcv+Pxmt)/number_modems(m6); 
%         Crcv = (TI)*Wrcv; 
%         Cxmt = TP*Wxmt; 
%         Chr = (Crcv+Cxmt); 
%         energy1a=[Phr; Chr]; 
     %**********************************************************       
         
        end     % end “for” loop that determines modem addresses 
     
        t_total(1,cycle+1)=t_total(1,cycle)+sum(t_modem2(:,cycle+1)); 
        d_total(1,cycle+1)=d_total(1,cycle)+sum(d_modem2(:,cycle+1)); 
        latency1(1,cycle)=sum(t_modem2(:,cycle+1)); 
      
        cycle=cycle+1; 
    
    end         % end “while” loop - period that network is evaluated 
     
    %********************************************************************* 
    % utilization=t_information/t_total 
    % 
    % throughput = actual baudrate so average actual amount of bits you can 
    %       transfer from peripheral to central considering present settings 
    % 
    % latency = the maximum period that you should have to wait to receive 
    %       data from a specific address 
    %********************************************************************* 
     
    utilization(a)=(d_total(1,length(d_total))/baudrate1(m1)) / ... 
        (t_total(1,length(t_total))); 
     
    throughput(a)=(d_total(1,length(d_total))) / ... 
        (t_total(1,length(t_total))); 
     
    latency(a)=mean(latency1); 
 
    pktabort(a)=100*pktabort(a)/( pktcorrect(a)+pktabort(a) ); 
     
  end 
  
util_ave(m1,m2,m3,m4,m5,m6,m7)=mean(utilization); 
  
throughput_ave(m1,m2,m3,m4,m5,m6,m7)=mean(throughput); 
  
latency_ave(m1,m2,m3,m4,m5,m6,m7)=mean(latency); 
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pktabort_ave(m1,m2,m3,m4,m5,m6,m7)=mean(pktabort); 
  
end 
end 
end 
end 
end 
end 
end 
  
util_ave=squeeze(shiftdim(util_ave)); 
throughput_ave=squeeze(shiftdim(throughput_ave)); 
latency_ave=squeeze(shiftdim(latency_ave)); 
pktabort_ave=squeeze(shiftdim(pktabort_ave)); 
result1d=[util_ave; throughput_ave; latency_ave; pktabort_ave]; 

 

The function POLL1e.m is used to simulate network strategy P1E. 

 

function[result1e, energy1e]=POLL1e 
 
clear, 
  
%************************************************************************ 
% 
% Initiate values through <ini.m> function 
% 
%************************************************************************ 
[number_modems t_wu t_acq d_ut d_crc d_nw t_delay1 t_delay2... 
    t_delay3 t_delay4 t_delay5 data_set baudrate1 baudrate2 maxretries... 
    L_sp A T alfa L1 L2 L3 L23 L4 maxCTS maxACK maxPOLL maxTOKEN]=INI; 
         
for m1=1:length(baudrate1)      % baudrate1 
for m2=1:length(data_set)       % data length 
for m3=1:length(L2)             % noise 
for m4=1:length(maxretries)     % maxretries 
for m5=1:length(L_sp)           % subpacket length 
for m6=1:length(number_modems)  % number_modems 
for m7=1:length(baudrate2)      % baudrate2 
        
    % calculate # subpackets and duration of utility packet 
  
    N_sp(m5)=ceil(data_set(m2)/L_sp(m5));    %number of subpackets 
    t_ut=(d_ut+d_crc)*8/baudrate2(m7)+t_acq;    % transmission time of utility packet 
     
%************************************************************************ 
% 
% Do the simulation a couple of times to get a good average of the  
% metrics you're interested in 
% 
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%************************************************************************* 
  
  for a=1:A;        % run simulation 'a' times    
     
% reset all values to zero 
     
    REPOLL=0; 
     
    d_total=0; 
    t_total=0; 
    latency1=0; 
    latency(a)=0; 
    pktabort(a)=0; 
    pktcorrect(a)=0; 
     
    d_modem1(1:number_modems(m6),1)=0; 
    d_modem2(1:number_modems(m6),1)=0; 
  
    t_modem1(1:number_modems(m6),1)=0; 
    t_modem2(1:number_modems(m6),1)=0; 
     
    cycle=1; 
     
    %********************** 
    %energy calc. only !!! 
    TP=0; 
    TI=0; 
    Wrcv=0.5;   %[W] 
    Wxmt=0.1;   %[W] 
    %********************* 
     
    while t_total<(3600*T)   
         
        for address=1:number_modems(m6); 
         
            %********************************************************** 
            % info packet     
            %********************************************************** 
         
            [INFO,DATA]=info(m1,m2,m3,m4,m5,m6,m7,REPOLL); 
             
            %********************************************************** 
            % utility or info packet corrupted 
            %********************************************************** 
             
            dice1=rand(1); 
             
            if ((dice1<L2(m3)) & (dice1>=L3(m3))) 
                DATA=0; 
            end 
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            %********************************************************** 
            % POLLING utility packet 
            %********************************************************** 
             
            [POLL,POLLFLAG]=poll(m1,m2,m3,m4,m5,m6,m7,dice1,REPOLL);    
                    
                   if POLLFLAG 
                        
                       POLL = 2*POLL; 
                        
                       dice4=rand(1); 
                         if dice4 < L4(m3) 
                            INFO=0; DATA=0; 
                         end  
                   end 
                    
            %********************************************************** 
            % add all events 
            %********************************************************** 
             
            t_xmit=POLL+INFO; 
            data(m2)=DATA; 
                 
                if DATA==0 
                    pktabort(a)=pktabort(a)+1; 
                else 
                    pktcorrect(a)=pktcorrect(a)+1; 
                end 
                 
            t_modem1(address,cycle+1)=t_modem1(address,cycle)+t_xmit; 
            t_modem2(address,cycle+1)=t_xmit; 
            d_modem1(address,cycle+1)=d_modem1(address,cycle)+data(m2)*8; 
            d_modem2(address,cycle+1)=data(m2)*8; 
         
            DATA=data_set(m2);          %reset data 
             
            counter=counter+1; 
                      
     %************************************************************ 
     % ENERGY BUDGET: ONLY IN NOISE FREE SIMULATION!!!!!! 
     % Instruction: set A=1; T=1; Only for single input parameter 
     %************************************************ 
%         TP = TP + POLL-t_delay1;                               
%         TI = TI + INFO - (t_delay2+t_delay3);          
%         Prcv = TP*Wrcv; 
%         Pxmt = (TI)*Wxmt; 
%         Phr = (Prcv+Pxmt)/number_modems(m6); 
%         Crcv = (TI)*Wrcv; 
%         Cxmt = TP*Wxmt; 
%         Chr = (Crcv+Cxmt); 
%         energy1c=[Phr; Chr]; 
     %**********************************************************        
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        end     % end for loop that determines modem addresses 
     
        t_total(1,cycle+1)=t_total(1,cycle)+sum(t_modem2(:,cycle+1)); 
        d_total(1,cycle+1)=d_total(1,cycle)+sum(d_modem2(:,cycle+1)); 
        latency1(1,cycle)=sum(t_modem2(:,cycle+1)); 
         
        cycle=cycle+1; 
    
    end         % end while loop - period that network is evaluated 
     
    %********************************************************************* 
    % utilization=t_information/t_total 
    % 
    % throughput = actual baudrate so average actual amount of bits you can 
    %       transfer from peripheral to central considering present settings 
    % 
    % latency = the maximum period that you should have to wait to receive 
    %       data from a specific address 
    %********************************************************************* 
     
    utilization(a)=(d_total(1,length(d_total))/baudrate1(m1)) / ... 
        (t_total(1,length(t_total))); 
     
    throughput(a)=(d_total(1,length(d_total))) / ... 
        (t_total(1,length(t_total))); 
     
    latency(a)=mean(latency1); 
     
    pktabort(a)=100*pktabort(a)/( pktcorrect(a)+pktabort(a) ); 
     
  end 
  
util_ave(m1,m2,m3,m4,m5,m6,m7)=mean(utilization); 
  
throughput_ave(m1,m2,m3,m4,m5,m6,m7)=mean(throughput); 
  
latency_ave(m1,m2,m3,m4,m5,m6,m7)=mean(latency); 
  
pktabort_ave(m1,m2,m3,m4,m5,m6,m7)=mean(pktabort); 
  
end 
end 
end 
end 
end 
end 
end 
  
util_ave=squeeze(shiftdim(util_ave)); 
throughput_ave=squeeze(shiftdim(throughput_ave)); 
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latency_ave=squeeze(shiftdim(latency_ave)); 
pktabort_ave=squeeze(shiftdim(pktabort_ave)); 
result1e=[util_ave; throughput_ave; latency_ave; pktabort_ave]; 

  

 The function TOKEN2b.m is used to simulate network strategy T2B. 

 

function[result2b, energy2b]=TOKEN2b 
 
clear, 
 
%************************************************************************ 
% 
% Initiate values through <ini.m> function 
% 
%************************************************************************ 
[number_modems t_wu t_acq d_ut d_crc d_nw t_delay1 t_delay2... 
    t_delay3 t_delay4 t_delay5 data_set baudrate1 baudrate2 maxretries... 
    L_sp A T alfa L1 L2 L3 L23 L4 maxCTS maxACK maxPOLL maxTOKEN]=INI; 
         
for m1=1:length(baudrate1)      % baudrate1 
for m2=1:length(data_set)       % data length 
for m3=1:length(L2)             % noise 
for m4=1:length(maxretries)     % maxretries 
for m5=1:length(L_sp)           % subpacket length 
for m6=1:length(number_modems)  % number_modems 
for m7=1:length(baudrate2)      % baudrate2 
        
    % calculate # subpackets and duration of utility packet 
  
    N_sp(m5)=ceil(data_set(m2)/L_sp(m5));    %number of subpackets 
    t_ut=(d_ut+d_crc)*8/baudrate2(m7)+t_acq;    % transmission time of utility packet 
     
%************************************************************************ 
% 
% Do the simulation a couple of times to get a good average of the  
% metrics you're interested in 
% 
%************************************************************************* 
  
  for a=1:A;        % run simulation 'a' times    
     
% reset all values to zero 
  
    RETOKEN=0; 
    HUB=0; 
     
    d_total=0; 
    t_total=0; 
    latency1=0; 
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    latency(a)=0; 
    pktabort(a)=0; 
    pktcorrect(a)=0; 
     
    d_modem1(1:number_modems(m6),1)=0; 
    d_modem2(1:number_modems(m6),1)=0; 
  
    t_modem1(1:number_modems(m6),1)=0; 
    t_modem2(1:number_modems(m6),1)=0; 
     
    cycle=1; 
     
    %********************** 
    %energy calc. only !!! 
    TT=0; 
    TI=0; 
    Wrcv=0.5;   %[W] 
    Wxmt=0.1;   %[W] 
    %********************* 
     
    while t_total<(3600*T)   
         
        for address=1:number_modems(m6); 
         
            %********************************************************** 
            % info packet     
            %********************************************************** 
            [INFO,DATA]=info(m1,m2,m3,m4,m5,m6,m7,RETOKEN); 
            %[INFO,DATA]=info(m1,m2,m3,m4,m5,m6,m7); 
                         
            %********************************************************** 
            % utility or info packet corrupted 
            %********************************************************** 
             
            dice1=rand(1); 
             
            if ((dice1<L2(m3)) & (dice1>=L3(m3))) 
                DATA=0; 
            end      
             
            %********************************************************** 
            % TOKEN utility packet 
            %********************************************************** 
             
            [TOKEN,TOKENFLAG]=token(m1,m2,m3,m4,m5,m6,m7,dice1,RETOKEN,HUB);    
               
                TOKEN = TOKEN - t_delay1; 
                 
                   if TOKENFLAG 
                       INFO=0;  
                       DATA=0;  
                   end 
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            %********************************************************** 
            % add all events 
            %**********************************************************      
                  
            t_xmit=TOKEN+INFO; 
            data(m2)=DATA; 
             
            if DATA==0 
                pktabort(a)=pktabort(a)+1; 
            else 
                pktcorrect(a)=pktcorrect(a)+1; 
            end 
                  
            t_modem1(address,cycle+1)=t_modem1(address,cycle)+t_xmit; 
            t_modem2(address,cycle+1)=t_xmit; 
            d_modem1(address,cycle+1)=d_modem1(address,cycle)+data(m2)*8; 
            d_modem2(address,cycle+1)=data(m2)*8; 
         
            DATA=data_set(m2);              %reset data 
            OOS=0;                          %reset OOSFLAG correction 
            DOOS=0;                         %reset OOSFLAG correction 
            
            counter=counter+1; 
             
     %************************************************************ 
     % ENERGY BUDGET: ONLY IN NOISE FREE SIMULATION!!!!!! 
     % Instruction: set A=1; T=1; Only for single input parameter 
     %************************************************ 
%         TT = TT + TOKEN;                               
%         TI = TI + INFO - (t_delay2+t_delay3); 
%         Prcv = (TT)*Wrcv; 
%         Pxmt = (TI)*Wxmt; 
%         Phr = (Prcv+Pxmt)/number_modems(m6); 
%         Crcv = (TI)*Wrcv; 
%         Cxmt = (TT)*Wxmt; 
%         Chr = (Crcv+Cxmt); 
%         energy2b=[Phr; Chr]; 
     %**********************************************************  
      
        end     % end for loop that determines modem addresses 
     
        t_total(1,cycle+1)=t_total(1,cycle)+sum(t_modem2(:,cycle+1)); 
        d_total(1,cycle+1)=d_total(1,cycle)+sum(d_modem2(:,cycle+1)); 
        latency1(1,cycle)=sum(t_modem2(:,cycle+1)); 
      
        cycle=cycle+1; 
    
    end         % end while loop - period that network is evaluated 
     
    %********************************************************************* 
    % baudrateact = actual baudrate so average actual amount of bits you can 
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    %       transfer from peripheral to central considering present settings 
    % 
    % utilization=t_information/t_total 
    % 
    % latency = the maximum period that you should have to wait to receive 
    %       data from a specific address 
    %********************************************************************* 
     
    throughput(a)=(d_total(1,length(d_total))) / (t_total(1,length(t_total))); 
  
    utilization(a)=(d_total(1,length(d_total))/baudrate1(m1)) / (t_total(1,length(t_total))); 
     
    latency(a)=mean(latency1); 
     
    pktabort(a)=100*pktabort(a)/( pktcorrect(a)+pktabort(a) ); 
       
  end 
  
util_ave(m1,m2,m3,m4,m5,m6,m7)=mean(utilization); 
  
throughput_ave(m1,m2,m3,m4,m5,m6,m7)=mean(throughput); 
  
latency_ave(m1,m2,m3,m4,m5,m6,m7)=mean(latency); 
  
pktabort_ave(m1,m2,m3,m4,m5,m6,m7)=mean(pktabort); 
  
end 
end 
end 
end 
end 
end 
end 
  
util_ave=squeeze(shiftdim(util_ave)); 
throughput_ave=squeeze(shiftdim(throughput_ave)); 
latency_ave=squeeze(shiftdim(latency_ave)); 
pktabort_ave=squeeze(shiftdim(pktabort_ave)); 
result2b=[util_ave; throughput_ave; latency_ave; pktabort_ave]; 

 

The function TOKEN3a.m is used to simulate network strategy T3A. 

 

function[result3a, energy3a]=TOKEN3a 
  
clear, 
  
%************************************************************************ 
% 
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% Initiate values through <ini.m> function 
% 
%************************************************************************ 
[number_modems t_wu t_acq d_ut d_crc d_nw t_delay1 t_delay2... 
    t_delay3 t_delay4 t_delay5 data_set baudrate1 baudrate2 maxretries... 
    L_sp A T alfa L1 L2 L3 L23 L4 maxCTS maxACK maxPOLL maxTOKEN]=INI; 
         
for m1=1:length(baudrate1)      % baudrate1 
for m2=1:length(data_set)       % data length 
for m3=1:length(L2)             % noise 
for m4=1:length(maxretries)     % maxretries 
for m5=1:length(L_sp)           % subpacket length 
for m6=1:length(number_modems)  % number_modems 
for m7=1:length(baudrate2)      % baudrate2 
        
    % calculate # subpackets and duration of utility packet 
  
    N_sp(m5)=ceil(data_set(m2)/L_sp(m5));    %number of subpackets 
    t_ut=(d_ut+d_crc)*8/baudrate2(m7)+t_acq;    % transmission time of utility packet 
     
%************************************************************************ 
% 
% Do the simulation a couple of times so you get a good average of the  
% metrics you're interested in 
% 
%************************************************************************* 
  
  for a=1:A;        % run simulation 'a' times    
     
% reset all values to zero 
  
    OOS=0; 
    DOOS=0; 
    SRQ=0; 
    DSRQ=0; 
    MEMFLAG(1:number_modems(m6),1)=0; 
    MEMFLAG(1:number_modems(m6),2)=0; 
    RETOKEN=1; 
    HUB=1; 
     
    d_total=0; 
    t_total=0; 
    t_central=0; 
    latency1=0; 
    latency(a)=0; 
    pktabort(a)=0; 
    pktcorrect(a)=0; 
     
    d_modem1(1:number_modems(m6),1)=0; 
    d_modem2(1:number_modems(m6),1)=0; 
  
    t_modem1(1:number_modems(m6),1)=0; 
    t_modem2(1:number_modems(m6),1)=0; 
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    cycle=1; 
     
    %********************** 
    %energy calc. only !!! 
    TT=0; 
    TI=0; 
    Wrcv=0.5;   %[W] 
    Wxmt=0.1;   %[W] 
    %********************* 
     
    while t_total<(3600*T)   
         
        for address=1:number_modems(m6); 
            
            %************************************************************** 
            % In case MEMFLAG(address,2) is set to 1 the previous packet  
            % was out-of-sequence. The packet will be retransmitted at  
            % baudrate2. If retransmission fails, the packets gets aborted 
            %************************************************************** 
             
            if MEMFLAG(address,2) 
                 
                [OOS,DOOS]=mem2(m1,m2,m3,m4,m5,m6,m7); 
                 
                MEMFLAG(address,2) = 0; 
                        
                if DOOS==0 
                    pktabort(a)=pktabort(a)+1; 
                else 
                    pktcorrect(a)=pktcorrect(a)+1; 
                end 
                 
            end 
  
            %************************************************************** 
            % In case MEMFLAG(address,1) is set to 1 the previous packet  
            % was corrupted. The packet will be retransmitted at  
            % baudrate1. If retransmission fails, the packets gets aborted 
            %************************************************************** 
             
            if MEMFLAG(address,1) 
                 
                [SRQ,DSRQ]=mem1(m1,m2,m3,m4,m5,m6,m7); 
                 
                MEMFLAG(address,1) = 0; 
                 
                if DSRQ==0 
                    pktabort(a)=pktabort(a)+1; 
                else 
                    pktcorrect(a)=pktcorrect(a)+1; 
                end 
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            end                 
                  
            %********************************************************** 
            % info packet     
            %********************************************************** 
             
            [INFO,DATA]=info(m1,m2,m3,m4,m5,m6,m7,RETOKEN); 
             
            dice1=rand(1); 
                         
            %********************************************************** 
            % utility or info packet corrupted: MEMFLAG(address,1) is  
            % set to 1 and no data is transmitted 
            %********************************************************** 
             
            dice1=rand(1); 
  
             if ((dice1<L2(m3)) & (dice1>=L3(m3))) 
  
                 MEMFLAG(address,1) = 1;     % Subpacket/header corrupted 
                 
                 DATA = 0; 
                 
             end 
  
            %********************************************************** 
            % TOKEN utility packet; if token is corrupted, the central 
            % node will retransmit token until maxtoken is achieved. 
            % If maxtoken is needed, TOKENFLAG = 1 and MEMFLAG(address,2) 
            % is set to 1 which will generate packet out of sequence.  
            % No data transmission will occur and the packet will be rexmit 
            % at next cycle 
            %********************************************************** 
             
            [TOKEN,TOKENFLAG]=token(m1,m2,m3,m4,m5,m6,m7,dice1,RETOKEN,HUB); 
                 
            if TOKENFLAG 
                
                MEMFLAG(address,2) = 1;      % Token corrupted, PKT OOS 
                MEMFLAG(address,1) = 0; 
                INFO=0; OOS=0; 
                DATA=0; DOOS=0; DSRQ=0; 
                
            end 
                               
            %********************************************************** 
            % add all events 
            %**********************************************************      
                    
            t_xmit=TOKEN+INFO+SRQ+OOS; 
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            data(m2)=DATA+DOOS+DSRQ; 
             
            if DATA ~= 0 
                pktcorrect(a)=pktcorrect(a)+1; 
            end 
             
     %************************************************************ 
     % ENERGY BUDGET: ONLY IN NOISE FREE SIMULATION!!!!!! 
     % Instruction: set A=1; T=1; Only for single input parameter 
     %************************************************ 
%         TT = TT + TOKEN;                               
%         TI = TI + INFO - (t_delay2+t_delay3);          
%         Prcv = TT*Wrcv; 
%         Pxmt = (TT+TI)*Wxmt; 
%         Phr = (Prcv+Pxmt)/number_modems(m6); 
%         Crcv = (TT+TI)*Wrcv; 
%         Cxmt = TT*Wxmt/number_modems(m6); 
%         Chr = (Crcv+Cxmt); 
%         energy3a=[Phr; Chr]; 
     %**********************************************************  
      
            t_modem1(address,cycle+1)=t_modem1(address,cycle)+t_xmit; 
            t_modem2(address,cycle+1)=t_xmit; 
            d_modem1(address,cycle+1)=d_modem1(address,cycle)+data(m2)*8; 
            d_modem2(address,cycle+1)=data(m2)*8; 
         
            DATA=data_set(m2);              %reset data 
            OOS=0;                          %reset OOSFLAG correction 
            DOOS=0;                         %reset OOSFLAG correction 
            SRQ=0; 
            DSRQ=0; 
             
            counter=counter+1; 
             
        end     % end for loop that determines modem addresses 
         
        %***************************************************************** 
        % Add contribution of central hub included in cycle: only 1 token 
        % will be generated. If the token from the last peripheral modem to 
        % the central modem fails, the central modem knows that it was its 
        % turn to transmit so it won;t initiate a new token 
        %***************************************************************** 
         
        t_central(1,cycle) = t_wu + t_acq + ... 
            (number_modems(m6)*2 + d_ut + d_crc)*8/baudrate2(m7) + t_delay4; 
         
        t_total(1,cycle+1)=t_total(1,cycle)+t_central(1,cycle)... 
            +sum(t_modem2(:,cycle+1)); 
        d_total(1,cycle+1)=d_total(1,cycle)+sum(d_modem2(:,cycle+1)); 
        latency1(1,cycle)=sum(t_modem2(:,cycle+1)); 
     
        cycle=cycle+1; 
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    end         % end while loop - period that network is evaluated 
     
    %********************************************************************* 
    % baudrateact = actual baudrate so average actual amount of bits you can 
    %       transfer from peripheral to central considering present settings 
    % 
    % utilization=t_information/t_total 
    % 
    % latency = the maximum period that you should have to wait to receive 
    %       data from a specific address 
    %********************************************************************* 
     
    throughput(a)=(d_total(1,length(d_total))) / (t_total(1,length(t_total))); 
  
    utilization(a)=(d_total(1,length(d_total))/baudrate1(m1)) / (t_total(1,length(t_total))); 
     
    latency(a)=mean(latency1); 
     
    pktabort(a)=100*pktabort(a)/( pktcorrect(a)+pktabort(a) ); 
  
  end 
  
util_ave(m1,m2,m3,m4,m5,m6,m7)=mean(utilization); 
  
throughput_ave(m1,m2,m3,m4,m5,m6,m7)=mean(throughput); 
  
latency_ave(m1,m2,m3,m4,m5,m6,m7)=mean(latency); 
  
pktabort_ave(m1,m2,m3,m4,m5,m6,m7)=mean(pktabort); 
  
end 
end 
end 
end 
end 
end 
end 
  
util_ave=squeeze(shiftdim(util_ave)); 
throughput_ave=squeeze(shiftdim(throughput_ave)); 
latency_ave=squeeze(shiftdim(latency_ave)); 
pktabort_ave=squeeze(shiftdim(pktabort_ave)); 
result3a=[util_ave; throughput_ave; latency_ave; pktabort_ave]; 
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The function poll.m performs polling simulation. 

 
function [POLL,POLLFLAG]=poll(m1,m2,m3,m4,m5,m6,m7,dice1,REPOLL) 
     
    [number_modems t_wu t_acq d_ut d_crc d_nw t_delay1 t_delay2... 
    t_delay3 t_delay4 t_delay5 data_set baudrate1 baudrate2 maxretries... 
    L_sp A T alfa L1 L2 L3 L23 L4 maxCTS maxACK maxPOLL maxTOKEN]=INI; 
     
    t_ut=(d_ut+d_crc)*8/baudrate2(m7)+t_acq; 
     
    if ((dice1<L1) & (dice1>=L2(m3))) 
         
        POLLcount=1; 
         
        if REPOLL 
             
               while POLLcount < maxPOLL(m4) 
                     dice4=rand(1); 
                     if dice4 < L4(m3) 
                        POLLcount=POLLcount+1; 
                     else 
                        break 
                     end 
               end 
                
        end 
  
        POLL = POLLcount * sum([t_wu t_ut t_delay5 t_delay3]); 
         
        if ( (REPOLL == 0) | (POLLcount == maxPOLL(m4)) )  
             
            POLLFLAG = 1;     
         
        else 
  
            POLLFLAG = 0; 
         
        end 
         
    else 
  
        POLL = sum([t_wu t_ut t_delay1]); 
         
        POLLFLAG = 0; 
         
    end 
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The function token.m performs token simulation. 

 
function [TOKEN,TOKENFLAG]=token(m1,m2,m3,m4,m5,m6,m7,dice1,RETOKEN,HUB) 
     
   [number_modems t_wu t_acq d_ut d_crc d_nw t_delay1 t_delay2... 
    t_delay3 t_delay4 t_delay5 data_set baudrate1 baudrate2 maxretries... 
    L_sp A T alfa L1 L2 L3 L23 L4 maxCTS maxACK maxPOLL maxTOKEN]=INI; 
  
    if HUB 
         t_token = t_wu + t_acq + (number_modems(m6)*2 + d_ut + d_crc)*8/baudrate2(m7); 
         TOKEN = t_token; 
    else 
         t_token=t_acq + t_wu + (d_ut+d_crc)*8/baudrate2(m7); 
         TOKEN = t_token + t_delay1; 
    end 
     
    TOKENFLAG = 0; 
     
    if ((dice1<L1) & (dice1>=L2(m3))) 
         
        TOKENcount=1; 
            
        if RETOKEN == 0 
            maxTOKEN(m4) = 1; 
        end 
         
        while TOKENcount <= maxTOKEN(m4) 
              dice4=rand(1); 
              if dice4 < L4(m3) 
                 TOKENcount=TOKENcount+1; 
              else 
                 break 
              end 
        end 
         
        if ( TOKENcount > maxTOKEN(m4) )  
             
            TOKENcount = maxTOKEN(m4); 
             
            TOKENFLAG = 1;     
         
        end 
  
            TOKEN = TOKEN + TOKENcount * sum([t_token t_delay5 t_delay3]); 
     
    end 
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The function info.m generates data packets. 

 
function [INFO,DATA]=info(m1,m2,m3,m4,m5,m6,m7,type) 
 
    [number_modems t_wu t_acq d_ut d_crc d_nw t_delay1 t_delay2... 
    t_delay3 t_delay4 t_delay5 data_set baudrate1 baudrate2 maxretries... 
    L_sp A T alfa L1 L2 L3 L23 L4 maxCTS maxACK maxPOLL maxTOKEN]=INI; 
     
    t_ut=(d_ut+d_crc)*8/baudrate2(m7)+t_acq; 
          
    if type == 0 
        N_sp(m5)=1; 
    else 
        N_sp(m5)=ceil(data_set(m2)/L_sp(m5)); 
    end 
  
    INFO = sum([t_wu t_ut (data_set(m2)+N_sp(m5)*d_crc+d_nw)*8/baudrate1(m1)... 
                    t_delay2 t_delay3]); 
     
    DATA = data_set(m2);   

 

The function oos.m creates packets that are retransmitted upon packet-out-of-

sequence situation. 

 

function [OOS,DOOS,OOSFLAG]=oos(m1,m2,m3,m4,m5,m6,m7,OOSFLAG,REPOLL) 
  
    [number_modems t_wu t_acq d_ut d_crc d_nw t_delay1 t_delay2... 
    t_delay3 t_delay4 t_delay5 data_set baudrate1 baudrate2 maxretries... 
    L_sp A T alfa L1 L2 L3 L23 L4 maxCTS maxACK maxPOLL maxTOKEN]=INI;    
     
    t_ut=(d_ut+d_crc)*8/baudrate2(m7)+t_acq; 
    N_sp(m5)=ceil(data_set(m2)/L_sp(m5));  
     
    dice1=(L3(m3)+L2(m3))/2; 
         
    [SRQ,DATA,OOSFLAG]= srq1(m1,m2,m3,m4,m5,m6,m7,dice1,OOSFLAG,REPOLL); 
     
    if DATA == 0 
               ACK = 0; 
    else 
        [ACK]=ack(m1,m2,m3,m4,m5,m6,m7,OOSFLAG); 
     end 
       
    OOS = SRQ + ACK; 
     
    DOOS = DATA; 
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    The function srq1.m determines what kind of unsuccessful initial transmission 

occurs and how the retransmission is performed. 

 

function [SRQ,DATA,OOSFLAG]= srq1(m1,m2,m3,m4,m5,m6,m7,dice1,OOSFLAG,REPOLL) 
     
    [number_modems t_wu t_acq d_ut d_crc d_nw t_delay1 t_delay2... 
    t_delay3 t_delay4 t_delay5 data_set baudrate1 baudrate2 maxretries... 
    L_sp A T alfa L1 L2 L3 L23 L4 maxCTS maxACK maxPOLL maxTOKEN]=INI;  
     
    t_ut=(d_ut+d_crc)*8/baudrate2(m7)+t_acq; 
    N_sp(m5)=ceil(data_set(m2)/L_sp(m5)); 
     
    if ((dice1<L2(m3)) & (dice1>=L3(m3)))   
              
                dice2=rand(1); 
                            
                  for i=1:(N_sp(m5)) 
                     
                     if ( (dice2<(i/N_sp(m5))) & (dice2>=(i-1)/N_sp(m5)) ) 
                      
                        dice3=rand(1); 
                 
                %********************************************************** 
                % header corrupted (causes packet out of sequence) 
                % subpacket corrupted + SRQ corrupted  
                %********************************************************** 
                     
                         if (dice3<L23(m3))  
                              
                            if REPOLL  
                                 
                                i=N_sp(m5); 
                              
                                [SRQ,DATA] = srq2(m1,m2,m3,m4,m5,m6,m7,i,OOSFLAG); 
                          
                                OOSFLAG = 0; 
                                                               
                            else   
                          
                                SRQ = sum([t_delay4 (3+15*i)*maxretries(m4)]); 
                
                                DATA = 0; 
                             
                                OOSFLAG = 1; 
                             
                            end 
                          
                %**********************************************************            
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                % subpackets corrupted (SRQ) 
                %********************************************************** 
                          
                         else 
                              
                             [SRQ,DATA]=srq2(m1,m2,m3,m4,m5,m6,m7,i,OOSFLAG); 
                                
                             OOSFLAG = 0; 
                              
                         end 
                          
                         break 
                         
                     end 
                                     
                  end 
  
    else 
  
         DATA = data_set(m2); 
          
         OOSFLAG = 0; 
          
         SRQ = 0; 
    end 
         
     

    The function srq2.m creates packets that are retransmitted upon unsuccessful 

initial transmission. 

 

function [SRQ,DATA]=srq2(m1,m2,m3,m4,m5,m6,m7,i,OOSFLAG) 
  
 
    [number_modems t_wu t_acq d_ut d_crc d_nw t_delay1 t_delay2... 
    t_delay3 t_delay4 t_delay5 data_set baudrate1 baudrate2 maxretries... 
    L_sp A T alfa L1 L2 L3 L23 L4 maxCTS maxACK maxPOLL maxTOKEN]=INI;    
     
    t_ut=(d_ut+d_crc)*8/baudrate2(m7)+t_acq; 
    N_sp(m5)=ceil(data_set(m2)/L_sp(m5)); 
     
    srqcount=1; 
     
    if OOSFLAG 
        baudrate = baudrate2(m7); 
    else 
        baudrate = baudrate1(m1); 
    end 
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    while srqcount <= maxretries(m4) 
          dice4=rand(1); 
            
          if dice4 < L4(m3) 
             srqcount=srqcount+1; 
          else 
             break 
          end 
    end 
  
    % in case of more than max SRQ, the packet gets aborted 
     
    if srqcount > maxretries(m4) 
        srqcount=maxretries(m4); 
        DATA=0; 
    else 
  
        DATA=data_set(m2); 
     
    end 
     
    % SRQ calculation is not really 1 on 1 because multiple retransmissions 
    % (srqcount) do not necessarily have to be the same length 
     
        SRQ=sum([ srqcount * sum([t_delay4 t_ut t_delay1 t_wu t_ut... 
            i*L_sp(m5)*8/baudrate] )]);  
 
 
 

    The function mem1.m can be compared to srq1.m and handles retransmissions 

in case of T3A. 

 

function [SRQ,DSRQ]=mem1(m1,m2,m3,m4,m5,m6,m7) 
  
    [number_modems t_wu t_acq d_ut d_crc d_nw t_delay1 t_delay2... 
    t_delay3 t_delay4 t_delay5 data_set baudrate1 baudrate2 maxretries... 
    L_sp A T alfa L1 L2 L3 L23 L4 maxCTS maxACK maxPOLL maxTOKEN]=INI; 
  
    t_ut=(d_ut+d_crc)*8/baudrate2(m7)+t_acq; 
    N_sp(m5)=ceil(data_set(m2)/L_sp(m5)); 
     
    dice2=rand(1); 
     
    for i=1:(N_sp(m5)) 
                  
       if ( (dice2<(i/N_sp(m5))) & (dice2>=(i-1)/N_sp(m5)) ) 
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          SRQ = sum([t_delay4 t_ut i*L_sp(m5)*8/baudrate1(m1)]); 
            
          break 
           
       end 
               
    end 
                     
    dice1=rand(1); 
                 
    if ((dice1<L2(m3)) & (dice1>=L3(m3))) 
                     
         DSRQ = 0; 
                 
    else 
  
         DSRQ = data_set(m2); 
                 
    end 

             

The function mem2.m handles retransmissions in case packet-out-of-sequence for 

T3A. 

 

function [OOS,DOOS]=mem2(m1,m2,m3,m4,m5,m6,m7) 
  
   [number_modems t_wu t_acq d_ut d_crc d_nw t_delay1 t_delay2... 
    t_delay3 t_delay4 t_delay5 data_set baudrate1 baudrate2 maxretries... 
    L_sp A T alfa L1 L2 L3 L23 L4 maxCTS maxACK maxPOLL maxTOKEN]=INI;     
     
    t_ut=(d_ut+d_crc)*8/baudrate2(m7)+t_acq; 
    N_sp(m5)=ceil(data_set(m2)/L_sp(m5)); 
     
    OOS = sum([t_delay4 t_ut ... 
                    (data_set(m2)+N_sp(m5)*d_crc+d_nw)*8/baudrate2(m7)]); 
                 
    dice1=rand(1); 
                 
    if ((dice1<L2) & (dice1>=L3(m3))) 
                     
        DOOS = 0; 
                 
    else 
  
        DOOS = data_set(m2); 
                 
    end 
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The function ack.m handles ACK messages for packet-out-of-sequence situations. 

 

 
function [ACK]=ack(m1,m2,m3,m4,m5,m6,m7,OOSFLAG) 
     
    [number_modems t_wu t_acq d_ut d_crc d_nw t_delay1 t_delay2... 
    t_delay3 t_delay4 t_delay5 data_set baudrate1 baudrate2 maxretries... 
    L_sp A T alfa L1 L2 L3 L23 L4 maxCTS maxACK maxPOLL maxTOKEN]=INI;  
     
    t_ut=(d_ut+d_crc)*8/baudrate2(m7)+t_acq; 
    N_sp(m5)=ceil(data_set(m2)/L_sp(m5)); 
         
     if OOSFLAG 
         baudrate = baudrate2(m7); 
     else 
         baudrate = baudrate1(m1); 
     end 
      
         ACK = t_delay4 + t_ut; 
          
         diceACK=rand(1); 
     
     if ((diceACK<L1) & (diceACK>= (L2(m3)+L1)/2 )) 
                 
          ACKcount=1; 
                              
          while ACKcount < maxACK(m4) 
                dice4=rand(1); 
                if dice4 < L4(m3) 
                   ACKcount=ACKcount+1; 
                else 
                   break 
                end 
          end 
  
          ACK = ACKcount*sum([ACK t_delay2 (data_set(m2)+N_sp(m5)*d_crc+d_nw)*8/baudrate]); 
                       
      end 
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